Loading...

A concise introduction to quantum mechanics /

Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamic...

Full description

Bibliographic Details
Main Author: Swanson, Mark S.
Format: Printed Book
Language:English
Series:IOP concise physics.
Subjects:
Online Access:IOP - Full text online
LEADER 05900cam a2200493Ii 4500
008 180316s2018 cau ob 000 0 eng d
999 |c 344986  |d 344986 
020 |a 9781681747163 
020 |a 1681747162 
020 |a 9781681747187 
020 |a 1681747189 
020 |z 9781681747170 
035 |a (OCoLC)on1028742490 
049 |a UIUU 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Swanson, Mark S., 
245 1 2 |a A concise introduction to quantum mechanics /  |c Mark S. Swanson. 
300 |a 1 online resource (1 volume (various pagings)). 
490 1 |a IOP concise physics,  |x 2053-2571 
500 |a "Version: 20180201"--Title page verso. 
500 |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Classical mechanics and electromagnetism -- 1.1. Newtonian mechanics -- 1.2. Light and electromagnetism -- 1.3. Properties of Newtonian point particle solutions 
505 8 |a 2. The origins of quantum mechanics -- 2.1. Blackbody radiation and Planck's constant -- 2.2. The photoelectric effect and photons -- 2.3. Electron diffraction and the de Broglie wavelength -- 2.4. Bohr's atom 
505 8 |a 3. The wave function -- 3.1. Basic properties of the wave function -- 3.2. Complex variables -- 3.3. The complex wave function -- 3.4. Fourier series and function spaces -- 3.5. The one-dimensional box 
505 8 |a 4. Wave mechanics -- 4.1. The Schr�odinger equation and its general properties -- 4.2. Observables and the wave function -- 4.3. The Heisenberg uncertainty principle -- 4.4. Wave packets 
505 8 |a 5. Applications of wave mechanics -- 5.1. Barrier reflection and tunneling -- 5.2. The one-dimensional harmonic oscillator -- 5.3. The hydrogen atom -- 5.4. Electromagnetic interactions 
505 8 |a 6. Dirac notation, operators, and matrices -- 6.1. Hilbert space -- 6.2. Hilbert space and Dirac notation -- 6.3. Matrices and basic linear algebra -- 6.4. Representations of quantum mechanics -- 6.5. The linear potential in momentum space -- 6.6. Operator techniques in quantum mechanics -- 6.7. Matrix representations of quantum mechanics -- 6.8. Two state oscillations -- 6.9. Electron diffraction revisited 
505 8 |a 7. Angular momentum, spin, and statistics -- 7.1. Symmetry operations -- 7.2. Rotation group theory -- 7.3. Rotations and quantum mechanics -- 7.4. General angular momentum -- 7.5. Electron spin and spinor representations -- 7.6. Multiparticle states and statistics -- 7.7. Angular momentum addition -- 8. Bibliography. 
520 3 |a Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schr�odinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schr�odinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum. 
650 0 |a Quantum theory. 
650 7 |a Quantum physics (quantum mechanics & quantum field theory).  |2 bicssc 
650 7 |a SCIENCE / Physics / Quantum Theory.  |2 bisacsh 
856 4 0 |3 IOP - Full text online  |u http://www.library.illinois.edu/proxy/go.php?url=http://iopscience.iop.org/book/978-1-6817-4716-3 
942 |c BK 
545 |a Mark Swanson received his PhD in physics from the University of Missouri at Columbia in 1976. After a post-doctoral appointment at the University of Alberta in Edmonton, he joined the physics department at the University of Connecticut in 1979. His research focused on the relationship between canonical quantization techniques and the functional approach of path integrals, which led to authoring the monograph Path Integrals and Quantum Processes. 
655 4 |a Electronic books. 
710 2 |a Morgan & Claypool Publishers,  |e publisher. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9781681747170 
830 0 |a IOP concise physics. 
952 |0 0  |1 0  |2 ddc  |4 0  |6 530_120000000000000_SWA_A  |7 0  |9 396923  |a PHY  |b PHY  |c ST1  |d 2019-09-05  |e Bookshop, Publication division  |g 3866.70  |i 6057  |l 0  |o 530.12 SWA/A  |p PHY6057  |r 2019-11-18  |v 5225.27  |w 2019-11-18  |y BK  |k D 69.95