|
|
|
|
| LEADER |
01569cam a22001817a 4500 |
| 020 |
|
|
|a 9780199662920
|
| 082 |
0 |
4 |
|a 512.482
|b Q3
|
| 100 |
1 |
|
|a Bincer, Adam M
|9 27502
|
| 245 |
1 |
0 |
|a Lie groups and lie algebras:
|b a physicist's perspective/
|c Adam M. Bincer.
|
| 260 |
|
|
|a Oxford:
|b Oxford University Press,
|c 2013.
|
| 300 |
|
|
|a xiii, 201p. :
|b ill. ;
|
| 504 |
|
|
|a Includes bibliographical references (p. [196]-197) and index.
|
| 505 |
0 |
|
|a Ch. 1. Generalities -- Ch. 2. Lie groups and lie algebras -- Ch. 3. Rotations: SO(3) and SU(2) -- Ch. 4. Representations of SU(2) -- Ch. 5. The so(n) algebra and Clifford numbers -- Ch. 6. Reality properties of spinors -- Ch. 7. Clebsch-Gordan series for spinors -- Ch. 8. The center and outer automorphisms of Spin(n) -- Ch. 9. Composition algebras -- Ch. 10. The exceptional group G₂ -- Ch. 11. Casimir operators for orthogonal groups -- Ch. 12. Classical groups -- Ch. 13. Unitary groups -- Ch. 14. The symmetric group S[r subscript] and Young tableaux -- Ch. 15. Reduction SU(n) tensors -- Ch. 16. Cartan basis, simple roots and fundamental weights -- Ch. 17. Cartan classification of semisimple algebras -- Ch. 18. Dynkin diagrams -- Ch. 19. The Lorentz group -- Ch. 20. The Poincaré and Liouville groups -- Ch. 21. The Coulomb problem in n space dimensions.
|
| 650 |
|
0 |
|a Lie groups.
|9 27503
|
| 650 |
|
0 |
|a Lie algebras.
|9 27504
|
| 942 |
|
|
|c BK
|
| 999 |
|
|
|c 64405
|d 64405
|
| 952 |
|
|
|0 0
|1 0
|4 0
|6 512_482000000000000_Q3
|7 0
|9 56315
|a MGUL
|b MGUL
|c GEN
|d 2014-12-26
|e Current Books Bill No 859 dated 17.12.2014
|g 4530.97
|l 0
|o 512.482 Q3
|p 52404
|r 2015-05-29
|y BK
|