载入...

Big Data Analysis for Bioinformatics and Biomedical Discoveries

Big Data Analysis for Bioinformatics and Biomedical Discoveries provides a practical guide to the nuts and bolts of Big Data, enabling you to quickly and effectively harness the power of Big Data to make groundbreaking biological discoveries, carry out translational medical research, and implement p...

全面介绍

书目详细资料
主要作者: Shui Qing Ye,ed
格式: Printed Book
出版: Chapman and Hall/CRC 2016
丛编:Chapman & Hall/CRC Mathematical and Computational Biology
主题:
LEADER 03776nam a22002057a 4500
999 |c 29590  |d 29590 
020 |a 9781498724524 
082 |a  570.285 BIG 
100 |a Shui Qing Ye,ed. 
245 |a Big Data Analysis for Bioinformatics and Biomedical Discoveries 
260 |b Chapman and Hall/CRC   |c 2016 
300 |a  xix, 273 pages : illustrations ; 24 cm. 
490 |a  Chapman & Hall/CRC Mathematical and Computational Biology 
500 |a  Covers the most important topics of Big Data analysis in biomedicine and biology Introduces computing tools for Big Data analysis, such as Linux-based command lines, Python, and R Presents data analysis pipelines for next-generation DNA sequencing applications, including Genome-seq, RNA-seq, Microbiome-seq, Methylome-seq, miRNA-seq, and ChIP-seq Shows how to integrate high-dimensional omics data, pharmacogenomics data, electronic medical records, in silico drug findings, and literature-based knowledge for precision medicine 
505 |a  Linux for big data analysis / Shui Qing Ye and Ding-You Li -- Pythong for big data analysis / Dmitry N. Grigoryev -- R for big data analysis / Stephen D. Simon -- Genome-Seq data analysis / Min Xiong, Li Qin Zhang, and Shui Qing Ye -- RNA-seq data analysis / Li Qin Zhang, Min Xiong, Daniel P. Heruth, and Shui Qing Ye -- Microbiome-seq data analysis / Daniel P. Heruth, Min Xiong, and Xun Jiang -- miRNA-seq data analysis / Daniel P. Heruth, Min Xiong, and Guang-Liand Bi -- Methylome-seq data analysis / Chengpeng Bi -- ChIP-seq data analysis / Shui Qing Ye, Li Qin Zhang, and Jiancheng Tu -- Integrating omics data in big data analysis / Li Qin Zhang, Daniel P. Heruth, and Shui Qing Ye -- Pharmacogenetics and genomics / Andrea Gaedigk, Katrin Sangkuhl, and Larisa H. Cavallari -- Exploring de-identified electronic health record data with i2b2 / Mark Hoffman -- Big data and drug discovery / Gerald J. Wyckoff and D. Andrew Skaff -- Literature-based knowledge discovery / Hongfanf Liu and Majid Rastegar-Mojarad -- Mitigating high dimensionality in big data / Deendayal Dinakarpandian. 
520 |a Big Data Analysis for Bioinformatics and Biomedical Discoveries provides a practical guide to the nuts and bolts of Big Data, enabling you to quickly and effectively harness the power of Big Data to make groundbreaking biological discoveries, carry out translational medical research, and implement personalized genomic medicine. Contributing to the NIH Big Data to Knowledge (BD2K) initiative, the book enhances your computational and quantitative skills so that you can exploit the Big Data being generated in the current omics era. The book explores many significant topics of Big Data analyses in an easily understandable format. It describes popular tools and software for Big Data analyses and explains next-generation DNA sequencing data analyses. It also discusses comprehensive Big Data analyses of several major areas, including the integration of omics data, pharmacogenomics, electronic health record data, and drug discovery. Accessible to biologists, biomedical scientists, bioinformaticians, and computer data analysts, the book keeps complex mathematical deductions and jargon to a minimum. Each chapter includes a theoretical introduction, example applications, data analysis principles, step-by-step tutorials, and authoritative references. 
650 |a  Bioinformatics. Medical sciences -- Data processing. Sequence alignment (Bioinformatics)  
942 |c BK 
952 |0 0  |1 0  |4 0  |6 570_285000000000000_BIG  |7 0  |9 32340  |a DCB  |b DCB  |d 2017-03-17  |l 1  |o 570.285 BIG  |p DCB3034  |r 2017-03-29  |s 2017-03-28  |w 2019-07-19  |y BK 
952 |0 0  |1 0  |4 0  |6 570_285000000000000_BIG  |7 0  |9 32341  |a DCB  |b DCB  |d 2018-11-03  |l 0  |o  570.285 BIG  |p DCB2902  |r 2018-11-03  |w 2019-07-19  |y BK