Loading...

Immunoinformatics: Predicting Immunogenicity in Silico

Immunoinformatics: Predicting Immunogenicity In Silico is a primer for researchers interested in this emerging and exciting technology and provides examples in the major areas within the field of immunoinformatics. This volume both engages the reader and provides a sound foundation for the use of im...

Full description

Bibliographic Details
Main Author: Darren R. Flower [ editor ]
Format: Printed Book
Published: New Jersey Humana Press 2007
Series:Methods in molecular biology (Clifton, N.J.), v. 409.
Subjects:
Table of Contents:
  • Immunoinformatics and the in silico prediction of immunogenicity. An introduction / D.R. Flower
  • Imgt, the international immunogenetics information system for immunoinformatics. Methods for querying imgt databases, tools, and web resources in the context of immunoinformatics / M.P. Lefranc
  • The imgt/hla database / J. Robinson and S.G. Marsh
  • Ipd: The immuno polymorphism database / J. Robinson and S.G. Marsh
  • Syfpeithi: Database for searching and t-cell epitope prediction / M.M. Schuler, M.D. Nastke and S. Stevanovikc
  • Searching and mapping of t-cell epitopes, mhc binders, and tap binders / M. Bhasin, S. Lata and G.P. Raghava
  • Searching and mapping of b-cell epitopes in bcipep database / S. Saha and G.P. Raghava
  • Searching haptens, carrier proteins, and anti-hapten antibodies / S. Srivastava [and others]
  • The classification of hla supertypes by grid/cpca and hierarchical clustering methods / P. Guan, I.A. Doytchinova and D.R. Flower
  • Structural basis for hla-a2 supertypes / P. Kangueane and M.K. Sakharkar
  • Definition of mhc supertypes through clustering of mhc peptide-binding repertoires / P.A. Reche and E.L. Reinherz
  • Grouping of class i hla alleles using electrostatic distribution maps of the peptide binding grooves / P. Kangueane and M.K. Sakharkar
  • Prediction of peptide-mhc binding using profiles / P.A. Reche and E.L. Reinherz
  • Application of machine learning techniques in predicting mhc binders / S. Lata, M. Bhasin and G.P. Raghava
  • Artificial intelligence methods for predicting t-cell epitopes / Y. Zhao, M.H. Sung and R. Simon
  • Toward the prediction of class i and ii mouse major histocompatibility complex-peptide-binding affinity: In silico bioinformatic step-by-step guide using quantitative structure-activity relationships / C.K. Hattotuwagama, I.A. Doytchinova and D.R. Flower
  • Predicting the mhc-peptide affinity using some interactive-type molecular descriptors and qsar models / T.H. Lin
  • Implementing the modular mhc model for predicting peptide binding / D.S. DeLuca and R. Blasczyk
  • Support vector machine-based prediction of mhc-binding peptides / P. Donnes
  • In silico prediction of peptide-mhc binding affinity using svrmhc / W. Liu [and others]
  • Hla-peptide binding prediction using structural and modeling principles / P. Kangueane and M.K. Sakharkar
  • A practical guide to structure-based prediction of mhc-binding peptides / S. Ranganathan and J.C. Tong
  • Static energy analysis of mhc class i and class ii peptide-binding affinity / M.N. Davies and D.R. Flower
  • Molecular dynamics simulations: Bring biomolecular structures alive on a computer / S. Wan, P.V. Coveney and D.R. Flower
  • An iterative approach to class ii predictions / R.R. Mallios
  • Building a meta-predictor for mhc class ii-binding peptides / L. Huang [and others]
  • Nonlinear predictive modeling of mhc class ii-peptide binding using bayesian neural networks / D.A. Winkler and F.R. Burden
  • Tappred prediction of tap-binding peptides in antigens / M. Bhasin, S. Lata and G.P. Raghava
  • Prediction methods for b-cell epitopes / S. Saha and G.P. Raghava
  • Histocheck. Evaluating structural and functional mhc similarities / D.S. DeLuca and R. Blasczyk
  • Predicting virulence factors of immunological interest / S. Saha and G.P. Raghava
  • Immunoinformatics. Predicting immunogenicity in silico. Preface / D.R. Flower.