Wird geladen...

Statistical Theory and Methods for Evolutionary Genomics

"Evolutionary genomics is a relatively new research field with the ultimate goal of understanding the underlying evolutionary and genetic mechanisms for the emergence of genome complexity under changing environments. It stems from an integration of high throughput data from functional genomi...

Ausführliche Beschreibung

Bibliographische Detailangaben
1. Verfasser: Xun Gu
Format: Printed Book
Veröffentlicht: Oxford ; New York Oxford University Press 2011
Schriftenreihe:Oxford biology.
Schlagworte:
LEADER 02380nam a2200181Ia 4500
999 |c 28404  |d 28404 
020 |a 9780199213269 
082 |a 572.838 GU-S 
100 |a  Xun Gu 
245 |a Statistical Theory and Methods for Evolutionary Genomics 
260 |a  Oxford ; New York  |b Oxford University Press  |c 2011 
300 |a  xi, 259 p. : ill ; 26 cm. 
490 |a  Oxford biology. 
505 |a  1. Basics in molecular evolution -- 2. Basics in bioinformatics and statistics -- 3. Functional divergence after gene duplication: statistical modeling -- 4. Functional divergence after gene duplication: applications and others -- 5. Phylogenomic expression analysis between duplicate genes -- 6. Expression between duplicate genes: genome-wide analysis -- 7. Tissue-driven hypothesis of genomic evolution -- 8. Gene pleiotropy and evolution of protein sequence -- 9. Modeling the genomic evolution of gene contents -- 10. Advanced topics in systems biology and network evolution. 
520 |a  "Evolutionary genomics is a relatively new research field with the ultimate goal of understanding the underlying evolutionary and genetic mechanisms for the emergence of genome complexity under changing environments. It stems from an integration of high throughput data from functional genomics, statistical modelling and bioinformatics, and the procedure of phylogeny-based analysis. Statistical Theory and Methods for Evolutionary Genomics summarises the statistical framework of evolutionary genomics, and illustrates how statistical modelling and testing can enhance our understanding of functional genomic evolution. The book reviews the recent developments in methodology from an evolutionary perspective of genome function, and incorporates substantial examples from high throughput data in model organisms. In addition to phylogeny-based functional analysis of DNA sequences, the author includes extensive discussion on how new types of functional genomic data (e.g. microarray) can provide exciting new insights into the evolution of genome function, which can lead in turn to an understanding of the emergence of genome complexity during evolution"- 
650 |a Genomics -Statistical methods. Evolutionary genetics -Statistical methods. 
942 |c BK 
952 |0 0  |1 0  |4 0  |6 572_838000000000000_GUS  |7 0  |9 31088  |a DCB  |b DCB  |d 2015-09-01  |l 0  |o 572.838 GU-S  |p DCB1939  |r 2015-09-01  |w 2019-07-19  |y BK