ロード中...
Combinatorial set theory : with a gentle introduction to forcing /
第一著者: | |
---|---|
フォーマット: | Printed Book |
出版事項: |
London ; New York :
Springer,
c2012.
|
シリーズ: | Springer monographs in mathematics,
|
主題: |
目次:
- 1.The setting
- 2. Overture: Ramsey's theorem
- 3. The axioms of Zermelo-Fraenkel set theory
- 4. Cardinal relations in ZF only
- 5. The axiom of choice
- 6. How to make two balls from one
- 7. Models of set theory with atoms
- 8. Twelve cardinals and their relations
- 9. The shattering number revisited
- 10. Happy families and their relatives
- 11. Coda: a dual form of Ramsey's theorem
- 12. The idea of forcing
- 13. Martin's axiom
- 14. The notion of forcing
- 15. Models of finite fragments of set theory
- 16. Proving unprovability
- 17. Models in which AC fails
- 18. Combining forcing notions
- 19. Models in which p=c
- 20. Properties of forcing extensions
- 21. Cohen forcing revisited
- 22. Silver-like forcing notions
- 23. Miller forcing
- 24. Mathias forcing
- 25. On the existence of Ramsey ultrafilters
- 26. Combinatorial properties of sets of partitions
- 27. Suite.