Loading...

Combinatorial set theory : with a gentle introduction to forcing /

Bibliographic Details
Main Author: Halbeisen, Lorenz J.
Format: Printed Book
Published: London ; New York : Springer, c2012.
Series:Springer monographs in mathematics,
Subjects:
LEADER 01721cam a22002177a 4500
999 |c 258515  |d 258515 
020 |a 9781447121725 (alk. paper) 
020 |a 1447121724 (alk. paper) 
020 |a 9781447121732 (eISBN) 
082 0 4 |a 511.3  |b HAL 
100 1 |a Halbeisen, Lorenz J. 
245 1 0 |a Combinatorial set theory :  |b with a gentle introduction to forcing /  |c Lorenz J. Halbeisen. 
260 |a London ;  |a New York :  |b Springer,  |c c2012. 
300 |a xvi, 453 p. :  |b ill. ; 
490 1 |a Springer monographs in mathematics, 
504 |a Includes bibliographical references and indexes. 
505 0 |a 1.The setting -- 2. Overture: Ramsey's theorem -- 3. The axioms of Zermelo-Fraenkel set theory -- 4. Cardinal relations in ZF only -- 5. The axiom of choice -- 6. How to make two balls from one -- 7. Models of set theory with atoms -- 8. Twelve cardinals and their relations -- 9. The shattering number revisited -- 10. Happy families and their relatives -- 11. Coda: a dual form of Ramsey's theorem -- 12. The idea of forcing -- 13. Martin's axiom -- 14. The notion of forcing -- 15. Models of finite fragments of set theory -- 16. Proving unprovability -- 17. Models in which AC fails -- 18. Combining forcing notions -- 19. Models in which p=c -- 20. Properties of forcing extensions -- 21. Cohen forcing revisited -- 22. Silver-like forcing notions -- 23. Miller forcing -- 24. Mathias forcing -- 25. On the existence of Ramsey ultrafilters -- 26. Combinatorial properties of sets of partitions -- 27. Suite. 
650 0 |a Combinatorial set theory. 
650 0 |a Forcing (Model theory) 
942 |c BK 
952 |0 0  |1 0  |4 0  |6 511_300000000000000_HAL  |7 0  |9 274589  |a DFS  |b DFS  |d 2020-01-17  |l 0  |o 511.3 HAL  |p DFS3960  |r 2020-01-17  |w 2020-01-17  |y BK