Loading...

Handbook of big data /

"Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the...

Full description

Bibliographic Details
Other Authors: Bühlmann, Peter, Drineas, Petros, Kane, Michael, Laan, M. J. van der
Format: Printed Book
Series:Chapman & Hall/CRC handbooks of modern statistical methods
Subjects:
Table of Contents:
  • The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans
  • Big-n versus big-p in big data / Norman Matloff
  • Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen
  • Integrate big data for better operation, control, and protection of power systems / Guang Lin
  • Interactive visual analysis of big data / Carlos Scheidegger
  • A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George
  • High-dimensional computational geometry / Alexandr Andoni
  • IRLBA: fast partial singular value decomposition method / James Baglama
  • Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas
  • Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais
  • Networks / Elizabeth L. Ogburn and Alexander Volfovsky
  • Mining large graphs / David F. Gleich and Michael W. Mahoney
  • Estimator and model selection using cross-validation / Iván Díaz
  • Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi
  • Learning structured distributions / Ilias Diakonikolas
  • Penalized estimation in complex methods / Jacob Bien and Daniela Witten
  • High-dimensional regression and inference / Lukas Meier
  • Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell
  • Scalable super learning / Erin LeDell
  • Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan
  • A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy
  • Targeted learning for variable importance / Sherri Rose
  • Online estimation of the average treatment effect / Sam Lendle
  • Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.