|
|
|
|
| LEADER |
00712nam a2200145Ia 4500 |
| 008 |
121027s9999 xx 000 0 eng d |
| 020 |
|
|
|a 1852337338
|
| 082 |
|
|
|a 515.9
|b HOW/C
|
| 100 |
|
|
|a Howie, John M
|
| 245 |
|
|
|a Complex analysis /
|
| 260 |
|
|
|a London:
|b Springer,
|c 2003.
|
| 300 |
|
|
|a 260p
|
| 505 |
|
|
|a 1. What do I need to know 2. Complex numbers 3. Prelude to complex analysis 4. Differentiation 5. Complex integration 6. Cauchy's theorem 7. Some consequences of Cauchy's theorem 8. Laurent series and the residue theorem 9. Applications of contou
|
| 999 |
|
|
|c 54223
|d 54223
|
| 952 |
|
|
|0 0
|1 0
|4 0
|6 515_900000000000000_HOW_C
|7 0
|9 54201
|a UL
|b UL
|c ST1
|d 2012-10-27
|l 3
|o 515.9 HOW/C
|p 77909
|r 2014-07-18
|s 2014-06-21
|w 2012-10-27
|y BK
|