|
|
|
|
LEADER |
00788nam a2200169Ia 4500 |
008 |
150624b xxu||||| |||| 00| 0 eng d |
020 |
|
|
|a 0123569508
|
020 |
|
|
|a 123569508
|
082 |
|
|
|a 512.2
|
100 |
|
|
|a Howie, J. M.
|
245 |
|
|
|a Introduction to semigroup theory /
|c J. M. Howie
|
260 |
|
|
|a London :
|b Academic Press,
|c 1976.
|
300 |
|
|
|a 272 p.
|
505 |
|
|
|a 1. Basic definitions 2. Monogenic semigroups 3. Ordered sets, semilattices and lattices 4. Binary relations; equivalences 5. Congruences 6. Free semigroups 7. Ideals and Rees congruences 8. Lattices of equivalences and congruences 9. Equivalences L,R,H,J
|
942 |
|
|
|c BK
|
999 |
|
|
|c 40820
|d 40820
|
952 |
|
|
|0 0
|1 0
|4 0
|6 512_200000000000000_HOW_I
|7 0
|9 40817
|a UL
|b UL
|c ST1
|d 1998-09-07
|l 2
|o 512.2 HOW/I
|p 59001
|r 2018-11-07
|s 2018-10-10
|w 2012-10-27
|y BK
|