Cargando...

Learn R for Applied Statistics : With Data Visualizations, Regressions, and Statistics /

Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. Aft...

Descripción completa

Detalles Bibliográficos
Autor principal: Hui, Eric Goh Ming
Formato: Printed Book
Lenguaje:English
Edición:1st ed. 2019.
Materias:
LEADER 02878cam a22004095i 4500
007 cr |||||||||||
008 181130s2019 xxu|||| o |||| 0|eng
010 |a  2019737829 
020 |a 9781484242001 
035 |a (DE-He213)978-1-4842-4200-1 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMX  |2 thema 
072 7 |a UMC  |2 thema 
082 0 4 |a 005.13  |2 23 
100 1 |a Hui, Eric Goh Ming. 
245 1 0 |a Learn R for Applied Statistics :  |b With Data Visualizations, Regressions, and Statistics /  |c by Eric Goh Ming Hui. 
250 |a 1st ed. 2019. 
300 |a 1 online resource (XV, 243 pages 111 illustrations) 
505 0 |a Chapter 1: Introduction -- Chapter 2: Getting Started -- Chapter 3: Basic -- Chapter 4: Descriptive Statistics -- Chapter 5: Data Visualizations -- Chapter 6: Inferential Statistics and Regressions. 
520 |a Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. You will: Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Big data. 
650 0 |a Mathematical statistics. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 1 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Big Data. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Open Source. 
776 0 8 |i Printed edition:  |z 9781484241998 
776 0 8 |i Printed edition:  |z 9781484242018 
776 0 8 |i Printed edition:  |z 9781484246344 
906 |a 0  |b ibc  |c origres  |d u  |e ncip  |f 20  |g y-gencatlg 
942 |c BK 
999 |c 364916  |d 364916 
952 |0 0  |1 0  |2 ddc  |4 0  |6 525_000000000000000_HUI_L  |7 0  |9 425422  |a STA  |b STA  |c ST1  |d 2022-01-03  |l 0  |o 525 HUI/L  |p STA2570  |r 2022-01-03  |w 2022-01-03  |y BK