Laddar...

Algebra 1 : Groups, Rings, Fields and Arithmetic /

This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate stu...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Lal, Ramji
Materialtyp: Printed Book
Språk:English
Upplaga:1st ed. 2017.
Serie:Infosys Science Foundation Series in Mathematical Sciences,
Ämnen:
LEADER 02879cam a22005295i 4500
007 cr |||||||||||
008 170509s2017 si |||| o |||| 0|eng
010 |a  2019767330 
020 |a 9789811042539 
035 |a (DE-He213)978-981-10-4253-9 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 bicssc 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
084 |2 msc  |a 00A05 
100 1 |a Lal, Ramji, 
245 1 0 |a Algebra 1 :  |b Groups, Rings, Fields and Arithmetic /  |c by Ramji Lal. 
250 |a 1st ed. 2017. 
300 |a 1 online resource (XVII, 433 pages) 
490 1 |a Infosys Science Foundation Series in Mathematical Sciences,  |x 2364-4036 
505 0 |a Chapter 1. Language of mathematics 1 (Logic) -- Chapter 2. Language Of Mathematics 2 (Set Theory) -- Chapter 3. Number System -- Chapter 4. Group Theory -- Chapter 5. Fundamental Theorems -- Chapter 6. Permutation groups and Classical Groups -- Chapter 7. Elementary Theory of Rings and Fields -- Chapter 8. Number Theory 2 -- Chapter 9. Structure theory of groups -- Chapter 10. Structure theory continued -- Chapter 11. Arithmetic in Rings. 
520 |a This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Nonassociative rings. 
650 0 |a Number theory. 
650 0 |a Rings (Algebra). 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Number Theory. 
776 0 8 |i Print version:  |t Fields and arithmetic.  |z 9789811042522  |w (DLC) 2017935548 
776 0 8 |i Printed edition:  |z 9789811042522 
776 0 8 |i Printed edition:  |z 9789811042546 
776 0 8 |i Printed edition:  |z 9789811350887 
776 0 8 |i Printed edition:  |z 9789811398605 
830 0 |a Infosys Science Foundation Series in Mathematical Sciences, 
906 |a 0  |b ibc  |c origres  |d u  |e ncip  |f 20  |g y-gencatlg 
942 |2 ddc  |c BK 
999 |c 362780  |d 362780 
952 |0 0  |1 0  |4 0  |6 00A05_LAL  |7 0  |9 422229  |a MAT  |b MAT  |c ST1  |d 2021-10-25  |i 7674  |l 0  |o 00A05 LAL  |p MAT7674  |r 2021-10-25  |w 2021-10-25  |y BK