ロード中...

Data Preprocessing in Data Mining /

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Fur...

詳細記述

書誌詳細
主要な著者: García, Salvador (著者), Herrera, Francisco (著者), Luengo, Julián (著者)
フォーマット: Printed Book
言語:English
版:1st ed. 2015.
シリーズ:Intelligent Systems Reference Library, 72
主題:
LEADER 03625cam a22004935i 4500
001 21740290
003 inmpuc
005 20201001101822.0
006 m |o d |
007 cr |||||||||||
008 140830s2015 gw |||| o |||| 0|eng
010 |a  2019757897 
020 |a 9783319102474 
024 7 |a 10.1007/978-3-319-10247-4  |2 doi 
035 |a (DE-He213)978-3-319-10247-4 
040 |a DLC  |b eng  |e pn  |e rda  |c DLC 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3 GAR/D  |2 23 
100 1 |a García, Salvador,  |e author. 
245 1 0 |a Data Preprocessing in Data Mining /  |c by Salvador García, Julián Luengo, Francisco Herrera. 
250 |a 1st ed. 2015. 
300 |a 1 online resource (XV, 320 pages 41 illustrations) 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 72 
505 0 |a Introduction -- Data Sets and Proper Statistical Analysis of Data Mining Techniques -- Data Preparation Basic Models -- Dealing with Missing Values -- Dealing with Noisy Data -- Data Reduction -- Feature Selection -- Instance Selection -- Discretization -- A Data Mining Software Package Including Data Preparation and Reduction: KEEL. 
520 |a Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Optical data processing. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Herrera, Francisco,  |e author. 
700 1 |a Luengo, Julián,  |e author. 
776 0 8 |i Print version:  |t Data preprocessing in data mining.  |z 9783319102467  |w (DLC) 2014946771 
776 0 8 |i Printed edition:  |z 9783319102467 
776 0 8 |i Printed edition:  |z 9783319102481 
776 0 8 |i Printed edition:  |z 9783319377315 
830 0 |a Intelligent Systems Reference Library,  |v 72 
906 |a 0  |b ibc  |c origres  |d u  |e ncip  |f 20  |g y-gencatlg 
942 |2 ddc  |c BK 
999 |c 353190  |d 353190 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_300000000000000_GAR_D  |7 0  |9 408329  |a DCS  |b DCS  |c ST1  |d 2020-10-01  |i 1144  |l 0  |o 006.3 GAR/D  |p DCS1144  |r 2020-10-01  |w 2020-10-01  |y BK