|
|
|
|
| LEADER |
01741cam a2200301 i 4500 |
| 001 |
18019819 |
| 003 |
inmpuc |
| 005 |
20200925113518.0 |
| 008 |
140127s2014 nyua b 001 0 eng |
| 010 |
|
|
|a 2014001794
|
| 020 |
|
|
|a 9781107048010 (hardback)
|
| 040 |
|
|
|a DLC
|b eng
|c DLC
|e rda
|d DLC
|
| 042 |
|
|
|a pcc
|
| 050 |
0 |
0 |
|a QA76.76.V47
|b A65 2014
|
| 082 |
0 |
0 |
|a 005.14 APP/P
|2 23
|
| 100 |
1 |
|
|a Appel, Andrew W.,
|d 1960-
|
| 245 |
1 |
0 |
|a Program logics for certified compilers /
|c Andrew W. Appel, Princeton University, Princeton, New Jersey ... [and seven others].
|
| 300 |
|
|
|a x, 458 pages :
|b illustrations ;
|c 24 cm
|
| 504 |
|
|
|a Includes bibliographical references (pages 442-451) and index.
|
| 505 |
0 |
|
|a Generic separation logic -- Hoare logic -- Separation logic -- Soundness of Hoare logic -- Mechanized semantic library -- Separation algebras -- Operators on separation algebras -- First-order separation logic -- A little case study -- Covariant recursive predicates -- Share accounting -- Higher order separation logic -- Separation logic as a logic -- From separation algebras to separation logic -- Simplification by rewriting -- Introduction to step-indexing -- Predicate implication and subtyping -- General recursive predicates -- Case study: separation logic with first-class functions.
|
| 650 |
|
0 |
|a Computer software
|x Verification.
|
| 650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
| 650 |
|
0 |
|a Compilers (Computer programs)
|
| 906 |
|
|
|a 7
|b cbc
|c orignew
|d 1
|e ecip
|f 20
|g y-gencatlg
|
| 942 |
|
|
|2 ddc
|c BK
|
| 955 |
|
|
|b rf21 2014-01-27
|i rf21 2014-01-27 to Dewey
|
| 999 |
|
|
|c 353016
|d 353016
|
| 952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 005_140000000000000_APP_P
|7 0
|9 408056
|a DCS
|b DCS
|d 2018-10-06
|i 1461
|l 0
|o 005.14 APP/P
|p DCS1461
|r 2020-09-25
|w 2020-09-25
|y BK
|