Laddar...

Hands-on unsupervised learning using Python : how to build applied machine learning solutions from unlabeled data /

Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning can...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Patel, Ankur A.
Materialtyp: Printed Book
Språk:English
Publicerad: 2019 O'reilly, Mumbai :
Upplaga:First edition.
Ämnen:
LEADER 03081cam a2200373 i 4500
008 200923t20192019caua b 001 0 eng c
010 |a  2020304238 
015 |a GBB955721  |2 bnb 
016 7 |a 019326633  |2 Uk 
020 |a 9789352138128 
035 |a (OCoLC)on1066070019 
042 |a pcc 
082 |2 23  |a 005.133P2 
100 |a  Patel, Ankur A.  |9 1580493 
245 1 0 |a Hands-on unsupervised learning using Python :  |b how to build applied machine learning solutions from unlabeled data /  |c Ankur A. Patel. 
250 |a First edition. 
260 |a 2019   |b O'reilly,  |c Mumbai : 
300 |a xx, 337p. :  |b illustrations ;  |c 24 cm. 
504 |a Includes bibliographical references and index. 
505 0 |a Part 1. Fundamentals of unsupervised learning. Unsupervised learning in the machine learning ecosystem -- End-to-end machine learning project -- Part 2. Unsupervised learning using Scikit-learn. Dimensionality reduction -- Anomaly detection -- Clustering -- Group segmentation -- Part 3. Unsupervised learning using TensorFlow and Keras. Autoencoders -- Hands-on autoencoder -- Semisupervised learning -- Part 4. Deep unsupervised learning using TensorFlow and Keras. Recommender systems using restricted Boltzmann machines -- Feature detection using deep belief networks -- Generative adversarial networks -- Time series clustering -- Conclusion. 
520 |a Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied; this is where unsupervised learning comes in. Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow using Keras. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 7 |a Artificial intelligence.  |2 fast 
650 7 |a Machine learning.  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
655 7 |a Handbooks and manuals.  |2 fast 
655 7 |a Handbooks and manuals.  |2 lcgft 
906 |a 7  |b cbc  |c pccadap  |d 2  |e ncip  |f 20  |g y-gencatlg 
942 |c BK 
955 |b rm14 2020-09-23 z-processor  |i rk07 2020-10-07 to BCCD 
999 |c 349453  |d 349453 
952 |0 0  |1 0  |2 ddc  |4 0  |6 005_000000000000000_133P2_PAT_H  |7 0  |9 403290  |a UL  |b UL  |c ST1  |d 2020-03-02  |g 918.75  |l 0  |o 005.133P2 PAT/H  |p 102349  |r 2020-03-02  |v 1225.00  |y BK