Chargement en cours...

Type theory and formal proof : an introduction /

"Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the...

Description complète

Détails bibliographiques
Auteurs principaux: Nederpelt, R. P. (Rob P.) (Auteur), Geuvers, Herman, 1964- (Auteur)
Langue:English
Publié: Cambridge ; New York : Cambridge University Press, 2014.
Sujets:
Accès en ligne:Cover image
LEADER 02701cam a2200361 i 4500
001 18083832
005 20200624124802.0
008 140327s2014 enk b 001 0 eng
906 |a 7  |b cbc  |c orignew  |d 1  |e ecip  |f 20  |g y-gencatlg 
925 0 |a acquire  |b 1 shelf copy  |x policy default  |e claim1 2014-11-24 
955 |b rl07 2014-03-27  |i rl07 2014-03-27 ONIX to Dewey  |w xl03 2014-03-28  |a xn11 2015-03-02 1 copy rec'd., to CIP ver.  |a rl00 2015-03-11 to SMA  |f rl02 2015-06-05 to CALM 
010 |a  2014010865 
020 |a 9781107036505 (hardback) 
040 |a DLC  |b eng  |c DLC  |e rda  |d DLC 
042 |a pcc 
050 0 0 |a QA9  |b .N37 2014 
082 0 0 |a 551.3  |2 23 
084 |a COM051010  |2 bisacsh 
100 1 |a Nederpelt, R. P.  |q (Rob P.),  |e author. 
245 1 0 |a Type theory and formal proof :  |b an introduction /  |c Rob Nederpelt, Eindhoven University of Technology, the Netherlands, Herman Geuvers, Radbound University Nijmegen, and Eindhoven University of Technology, the Netherlands. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2014. 
300 |a xxv, 436 pages ;  |c 26 cm 
336 |a text  |2 rdacontent 
337 |a unmediated  |2 rdamedia 
338 |a volume  |2 rdacarrier 
504 |a Includes bibliographical references (pages 411-417) and indexes. 
520 |a "Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems culminating in the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalize mathematics. The only prerequisites are a good knowledge of undergraduate algebra and analysis. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarize themselves with the material"--  |c Provided by publisher. 
650 0 |a Type theory. 
650 7 |a COMPUTERS / Programming Languages / General.  |2 bisacsh 
700 1 |a Geuvers, Herman,  |d 1964-  |e author. 
856 4 2 |3 Cover image  |u http://assets.cambridge.org/97811070/36505/cover/9781107036505.jpg 
999 |c 344674  |d 344674 
952 |0 0  |1 0  |4 0  |7 3  |9 418360  |a MAT  |b MAT  |d 2021-08-13  |e 2  |g 3824.66  |l 0  |p MAT7602  |r 2021-08-13  |v 5312.03  |w 2021-08-13