Llwytho...

Deformation theory /

"The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over s...

Disgrifiad llawn

Manylion Llyfryddiaeth
Prif Awdur: Hartshorne, Robin
Fformat: Printed Book
Iaith:English
Cyhoeddwyd: New York : Springer, 2010.
Cyfres:Graduate texts in mathematics ; 257.
Pynciau:
LEADER 02465cam a22003617a 4500
008 091015s2010 nyua b 001 0 eng
999 |c 335520  |d 335520 
010 |a  2009939327 
015 |a GBA987042  |2 bnb 
016 7 |a 015361991  |2 Uk 
016 7 |a 996515798  |2 DE-101 
020 |a 9781441915955 (hbk.) 
020 |a 1441915958 (hbk.) 
020 |a 1441915966 (ebk.) 
020 |a 9781441915962 (ebk.) 
035 |a (OCoLC)ocn496229710 
042 |a ukblcatcopy  |a lccopycat 
082 0 4 |a 516.35  |2 22 
100 1 |a Hartshorne, Robin. 
245 1 0 |a Deformation theory /  |c Robin Hartshorne. 
260 |a New York :  |b Springer,  |c 2010. 
300 |a vi, 234 p. :  |b ill. ;  |c 25 cm. 
490 1 |a Graduate texts in mathematics,  |x 0072-5285 ;  |v 257 
504 |a Includes bibliographical references (p. [217]-224) and index. 
520 |a "The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. Topics include: deformations over the dual numbers; smoothness and the infinitesimal lifting property; Zariski tangent space and obstructions to deformation problems; pro-representable functors of Schlessinger; infinitesimal study of moduli spaces such as the Hilbert scheme, Picard scheme, moduli of curves, and moduli of stable vector bundles. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley."-- 
650 0 |a Deformations of singularities. 
650 0 |a Geometry, Algebraic. 
650 0 7 |a Deformation <Mathematik>  |2 swd 
942 |c BK 
830 0 |a Graduate texts in mathematics ;  |v 257. 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
955 |a pc17 2009-10-15  |a xh00 2010-01-20 to USPL/STM  |a xh00 2010-01-22 to USPL/STM  |b xh14 2011-04-07 z-processor  |i xh14 2011-04-12 2 copies to BCCD 
952 |0 0  |1 0  |2 ddc  |4 0  |6 516_350000000000000  |7 0  |9 384002  |a MAT  |b MAT  |c ST1  |d 2019-05-21  |i 6199  |l 0  |o 516.35  |p MAT6199  |r 2019-05-21  |w 2019-05-21  |y BK