Loading...

A course in mathematical logic for mathematicians /

"A Course in Mathematical Logic for Mathematicians, Second Edition offers a straightforward introduction to modern mathematical logic that will appeal to the intuition of working mathematicians. The book begins with an elementary introduction to formal languages and proceeds to a discussion of...

Full description

Bibliographic Details
Main Author: Manin, I︠U︡. I.
Other Authors: Koblitz, Neal, Zilber, Boris
Format: Printed Book
Language:English
Russian
Published: New York : Springer, 2010.
Edition:2nd ed.
Series:Graduate texts in mathematics ; 53.
Subjects:
LEADER 03145cam a22004697a 4500
008 090810s2010 nyua b 001 0 eng d
999 |c 335512  |d 335512 
010 |a  2009934521 
015 |a 99339664X  |2 dnb 
015 |a 09,N15,0642  |2 dnb 
020 |a 1441906142 (hbk.) 
020 |a 9781441906144 (hbk.) 
020 |a 9781441906151 
020 |a 1441906150 
028 5 2 |a 12617210 
035 |a (OCoLC)ocn436030792 
041 1 |a eng  |h rus 
042 |a lccopycat 
082 0 4 |a 511.3  |2 22 
084 |a 510  |2 sdnb 
084 |a SK 130  |2 rvk 
100 1 |a Manin, I︠U︡. I. 
245 1 2 |a A course in mathematical logic for mathematicians /  |c Yu. I. Manin ; chapters I-VIII translated from the Russian by Neal Koblitz ; with new chapters by Boris Zilber and Yuri I. Manin. 
250 |a 2nd ed. 
260 |a New York :  |b Springer,  |c 2010. 
300 |a xvii, 384 p. :  |b ill. ;  |c 25 cm. 
490 1 |a Graduate texts in mathematics,  |x 0072-5285 ;  |v 53 
500 |a The first edition was published in 1977 with the title: A course in mathematical logic. 
504 |a Includes bibliographical references (p. [379]-380) and index. 
505 0 |a Provability: I. Introduction to formal languages ; II. Truth and deducibility ; III. The continuum problem and forcing ; IV. The continuum problem and constructible sets -- Computability: V. Recursive functions and Church's thesis ; VI. Diophantine sets and algorithmic undecidability -- Provability and computability: VII. Gödel's incompleteness theorem ; VIII. Recursive groups ; IX. Constructive universe and computation -- Model theory: X. Model theory. 
520 1 |a "A Course in Mathematical Logic for Mathematicians, Second Edition offers a straightforward introduction to modern mathematical logic that will appeal to the intuition of working mathematicians. The book begins with an elementary introduction to formal languages and proceeds to a discussion of proof theory. It then presents several highlights of 20th century mathematical logic, including theorems of Godel and Tarski, and Cohen's theorem on the independence of the continuum hypothesis. A unique feature of the text is a discussion of quantum logic." "The exposition then moves to a discussion of computability theory that is based on the notion of recursive functions and stresses number-theoretic connections. The text presents a complete proof of the theorem of Davis-Putnam-Robinson-Matiyasevich as well as a proof of Higman's theorem on recursive groups. Kolmogorov complexity is also treated."--BOOK JACKET. 
650 0 |a Logic, Symbolic and mathematical. 
650 0 7 |a Einführung.  |2 swd 
650 0 7 |a Mathematische Logik.  |2 swd 
700 1 |a Koblitz, Neal, 
700 1 |a Zilber, Boris. 
942 |c BK 
830 0 |a Graduate texts in mathematics ;  |v 53. 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
955 |b xh89 2010-12-20 z-processor  |i xh89 2010-12-20 to BCCD 
955 |a pc17 2009-08-10  |a xh00 2009-12-23 to USPL/STM  |a xh00 2010-01-07 to USPL/STM 
952 |0 0  |1 0  |2 ddc  |4 0  |6 511_300000000000000  |7 0  |9 383991  |a MAT  |b MAT  |c ST1  |d 2019-05-20  |i 6134  |l 0  |o 511.3  |p MAT6134  |r 2019-05-20  |w 2019-05-20  |y BK