Loading...

Principles of functional analysis /

Bibliographic Details
Main Author: Schechter, Martin
Format: Printed Book
Language:English
Published: Providence, R.I. : American Mathematical Society, 2002.
Edition:2nd ed.
Series:Graduate studies in mathematics; v 36.
Subjects:
Online Access:Table of contents
Table of Contents:
  • Machine generated contents note: Chapter 1. BASIC NOTIONS
  • 1.1. A problem from differential equations
  • 1.2. An examination of the results
  • 1.3. Examples of Banach spaces
  • 1.4. Fourier series
  • 1.5. Problems
  • Chapter 2. DUALITY
  • 2.1. The Riesz representation theorem
  • 2.2. The Hahn-Banach theorem
  • 2.3. Consequences of the Hahn-Banach theorem
  • 2.4. Examples of dual spaces
  • 2.5. Problems
  • Chapter 3. LINEAR OPERATORS
  • 3.1. Basic properties
  • 3.2. The adjoint operator
  • 3.3. Annihilators
  • 3.4. The inverse operator
  • 3.5. Operators with closed ranges
  • 3.6. The uniform boundedness principle
  • 3.7. The open mapping theorem
  • 3.8. Problems
  • Chapter 4. THE RIESZ THEORY FOR COMPACT OPERATORS
  • 4.1. A type of integral equation
  • 4.2. Operators of finite rank
  • 4.3. Compact operators
  • 4.4. The adjoint of a compact operator
  • 4.5. Problems
  • Chapter 5. FREDHOLM OPERATORS
  • 5.1. Orientation
  • 5.2. Further properties
  • 5.3. Perturbation theory
  • 5.4. The adjoint operator
  • 5.5. A special case
  • 5.6. Semi-Fredholm operators
  • 5.7. Products of operators
  • 5.8. Problems
  • Chapter 6. SPECTRAL THEORY
  • 6.1. The spectrum and resolvent sets
  • 6.2. The spectral mapping theorem
  • 6.3. Operational calculus
  • 6.4. Spectral projections
  • 6.5. Complexification
  • 6.6. The complex Hahn-Banach theorem
  • 6.7. A geometric lemma
  • 6.8. Problems
  • Chapter 7. UNBOUNDED OPERATORS
  • 7.1. Unbounded Fredholm operators
  • 7.2. Further properties
  • 7.3. Operators with closed ranges
  • 7.4. Total subsets
  • 7.5. The essential spectrum
  • 7.6. Unbounded semi-Fredholm operators
  • 7.7. The adjoint of a product of operators
  • 7.8. Problems
  • Chapter 8. REFLEXIVE BANACH SPACES
  • 8.1. Properties of reflexive spaces
  • 8.2. Saturated subspaces
  • 8.3. Separable spaces
  • 8.4. Weak convergence
  • 8.5. Examples
  • 8.6. Completing a normed vector space
  • 8.7. Problems
  • Chapter 9. BANACH ALGEBRAS
  • 9.1. Introduction
  • 9.2. An example
  • 9.3. Commutative algebras
  • 9.4. Properties of maximal ideals
  • 9.5. Partially ordered sets
  • 9.6. Riesz operators
  • 9.7. Fredholm perturbations
  • 9.8. Semi-Fredholm perturbations
  • 9.9. Remarks
  • 9.10. Problems
  • Chapter 10. SEMIGROUPS
  • 10.1. A differential equation
  • 10.2. Uniqueness
  • 10.3. Unbounded operators
  • 10.4. The infinitesimal generator
  • 10.5. An approximation theorem
  • 10.6. Problems
  • Chapter 11. HILBERT SPACE
  • 11.1. When is a Banach space a Hilbert space?
  • 11.2. -Normal operators
  • 11.3. Approximation by operators of finite rank
  • 11.4. Integral operators
  • 11.5. Hyponormal operators
  • 11.6. Problems
  • Chapter 12. BILINEAR FORMS
  • 12.1. The numerical range
  • 12.2. The associated operator
  • 12.3. Symmetric forms
  • 12.4. Closed forms
  • 12.5. Closed extensions
  • 12.6. Closable operators
  • 12.7. Some proofs
  • 12.8. Some representation theorems
  • 12.9. Dissipative operators
  • 12.10. The case of a line or a strip
  • 12.11. Selfadjoint extensions
  • 12.12. Problems
  • Chapter 13. SELFADJOINT OPERATORS
  • 13.1. Orthogonal projections
  • 13.2. Square roots of operators
  • 13.3. A decomposition of operators
  • 13.4. Spectral resolution
  • 13.5. Some consequences
  • 13.6. Unbounded selfadjoint operators
  • 13.7. Problems
  • Chapter 14. MEASURES OF OPERATORS
  • 14.1. A seminorm
  • 14.2. Perturbation classes
  • 14.3. Related measures
  • 14.4. Measures of noncompactness
  • 14.5. The quotient space
  • 14.6. Strictly singular operators
  • 14.7. - Norm perturbations
  • 14.8. Perturbation functions
  • 14.9. Factored perturbation functions
  • 14.10. Problems
  • Chapter 15. EXAMPLES AND APPLICATIONS
  • 15.1. A few remarks
  • 15.2. A differential operator
  • 15.3. Does A have a closed extension?
  • 15.4. The closure of A
  • 15.5. Another approach
  • 15.6. The Fourier transform
  • 15.7. Multiplication by a function
  • 15.8. More general operators
  • 15.9. B-Compactness
  • 15.10. The adjoint of A
  • 15.11. An integral operator
  • 15.12. Problems
  • Appendix A. Glossary
  • Appendix B. Major Theorems
  • Bibliography
  • Index.