Loading...
Principles of functional analysis /
Main Author: | |
---|---|
Format: | Printed Book |
Language: | English |
Published: |
Providence, R.I. :
American Mathematical Society,
2002.
|
Edition: | 2nd ed. |
Series: | Graduate studies in mathematics;
v 36. |
Subjects: | |
Online Access: | Table of contents |
Table of Contents:
- Machine generated contents note: Chapter 1. BASIC NOTIONS
- 1.1. A problem from differential equations
- 1.2. An examination of the results
- 1.3. Examples of Banach spaces
- 1.4. Fourier series
- 1.5. Problems
- Chapter 2. DUALITY
- 2.1. The Riesz representation theorem
- 2.2. The Hahn-Banach theorem
- 2.3. Consequences of the Hahn-Banach theorem
- 2.4. Examples of dual spaces
- 2.5. Problems
- Chapter 3. LINEAR OPERATORS
- 3.1. Basic properties
- 3.2. The adjoint operator
- 3.3. Annihilators
- 3.4. The inverse operator
- 3.5. Operators with closed ranges
- 3.6. The uniform boundedness principle
- 3.7. The open mapping theorem
- 3.8. Problems
- Chapter 4. THE RIESZ THEORY FOR COMPACT OPERATORS
- 4.1. A type of integral equation
- 4.2. Operators of finite rank
- 4.3. Compact operators
- 4.4. The adjoint of a compact operator
- 4.5. Problems
- Chapter 5. FREDHOLM OPERATORS
- 5.1. Orientation
- 5.2. Further properties
- 5.3. Perturbation theory
- 5.4. The adjoint operator
- 5.5. A special case
- 5.6. Semi-Fredholm operators
- 5.7. Products of operators
- 5.8. Problems
- Chapter 6. SPECTRAL THEORY
- 6.1. The spectrum and resolvent sets
- 6.2. The spectral mapping theorem
- 6.3. Operational calculus
- 6.4. Spectral projections
- 6.5. Complexification
- 6.6. The complex Hahn-Banach theorem
- 6.7. A geometric lemma
- 6.8. Problems
- Chapter 7. UNBOUNDED OPERATORS
- 7.1. Unbounded Fredholm operators
- 7.2. Further properties
- 7.3. Operators with closed ranges
- 7.4. Total subsets
- 7.5. The essential spectrum
- 7.6. Unbounded semi-Fredholm operators
- 7.7. The adjoint of a product of operators
- 7.8. Problems
- Chapter 8. REFLEXIVE BANACH SPACES
- 8.1. Properties of reflexive spaces
- 8.2. Saturated subspaces
- 8.3. Separable spaces
- 8.4. Weak convergence
- 8.5. Examples
- 8.6. Completing a normed vector space
- 8.7. Problems
- Chapter 9. BANACH ALGEBRAS
- 9.1. Introduction
- 9.2. An example
- 9.3. Commutative algebras
- 9.4. Properties of maximal ideals
- 9.5. Partially ordered sets
- 9.6. Riesz operators
- 9.7. Fredholm perturbations
- 9.8. Semi-Fredholm perturbations
- 9.9. Remarks
- 9.10. Problems
- Chapter 10. SEMIGROUPS
- 10.1. A differential equation
- 10.2. Uniqueness
- 10.3. Unbounded operators
- 10.4. The infinitesimal generator
- 10.5. An approximation theorem
- 10.6. Problems
- Chapter 11. HILBERT SPACE
- 11.1. When is a Banach space a Hilbert space?
- 11.2. -Normal operators
- 11.3. Approximation by operators of finite rank
- 11.4. Integral operators
- 11.5. Hyponormal operators
- 11.6. Problems
- Chapter 12. BILINEAR FORMS
- 12.1. The numerical range
- 12.2. The associated operator
- 12.3. Symmetric forms
- 12.4. Closed forms
- 12.5. Closed extensions
- 12.6. Closable operators
- 12.7. Some proofs
- 12.8. Some representation theorems
- 12.9. Dissipative operators
- 12.10. The case of a line or a strip
- 12.11. Selfadjoint extensions
- 12.12. Problems
- Chapter 13. SELFADJOINT OPERATORS
- 13.1. Orthogonal projections
- 13.2. Square roots of operators
- 13.3. A decomposition of operators
- 13.4. Spectral resolution
- 13.5. Some consequences
- 13.6. Unbounded selfadjoint operators
- 13.7. Problems
- Chapter 14. MEASURES OF OPERATORS
- 14.1. A seminorm
- 14.2. Perturbation classes
- 14.3. Related measures
- 14.4. Measures of noncompactness
- 14.5. The quotient space
- 14.6. Strictly singular operators
- 14.7. - Norm perturbations
- 14.8. Perturbation functions
- 14.9. Factored perturbation functions
- 14.10. Problems
- Chapter 15. EXAMPLES AND APPLICATIONS
- 15.1. A few remarks
- 15.2. A differential operator
- 15.3. Does A have a closed extension?
- 15.4. The closure of A
- 15.5. Another approach
- 15.6. The Fourier transform
- 15.7. Multiplication by a function
- 15.8. More general operators
- 15.9. B-Compactness
- 15.10. The adjoint of A
- 15.11. An integral operator
- 15.12. Problems
- Appendix A. Glossary
- Appendix B. Major Theorems
- Bibliography
- Index.