|
|
|
|
LEADER |
02122cam a2200301 a 4500 |
008 |
120309s2012 enk b 001 0 eng |
999 |
|
|
|c 335260
|d 335260
|
010 |
|
|
|a 2012010132
|
020 |
|
|
|a 9781107017771 (hardback)
|
042 |
|
|
|a pcc
|
082 |
0 |
0 |
|a 519.2/3
|2 23
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
100 |
1 |
|
|a Nourdin, Ivan.
|
245 |
1 |
0 |
|a Normal approximations with Malliavin calculus :
|b from Stein's method to universality /
|c Ivan Nourdin, Giovanni Peccati.
|
260 |
|
|
|a Cambridge [England] ;
|a New York :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a xiv, 239 p. ;
|c 23 cm.
|
490 |
0 |
|
|a Cambridge tracts in mathematics ;
|v 192
|
504 |
|
|
|a Includes bibliographical references (p. 227-234) and indexes.
|
505 |
8 |
|
|a Machine generated contents note: Preface; Introduction; 1. Malliavin operators in the one-dimensional case; 2. Malliavin operators and isonormal Gaussian processes; 3. Stein's method for one-dimensional normal approximations; 4. Multidimensional Stein's method; 5. Stein meets Malliavin: univariate normal approximations; 6. Multivariate normal approximations; 7. Exploring the Breuer-Major Theorem; 8. Computation of cumulants; 9. Exact asymptotics and optimal rates; 10. Density estimates; 11. Homogeneous sums and universality; Appendix 1. Gaussian elements, cumulants and Edgeworth expansions; Appendix 2. Hilbert space notation; Appendix 3. Distances between probability measures; Appendix 4. Fractional Brownian motion; Appendix 5. Some results from functional analysis; References; Index.
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Malliavin calculus.
|
650 |
|
7 |
|a MATHEMATICS / Probability & Statistics / General.
|2 bisacsh
|
700 |
1 |
|
|a Peccati, Giovanni,
|e Author.
|
856 |
4 |
2 |
|3 Cover image
|u http://assets.cambridge.org/97811070/17771/cover/9781107017771.jpg
|
942 |
|
|
|c BK
|
906 |
|
|
|a 7
|b cbc
|c orignew
|d 1
|e ecip
|f 20
|g y-gencatlg
|
955 |
|
|
|b xj07 2012-03-09
|c xj07 2012-03-09 ONIX to Gen Sci/STM
|a xn05 2012-08-01 1 copy rec'd., to CIP ver.
|
952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 519_200000000000000_3
|7 0
|9 383593
|a MAT
|b MAT
|c ST1
|d 2019-05-14
|i 6049
|l 0
|o 519.2/3
|p MAT6049
|r 2019-05-14
|w 2019-05-14
|y BK
|