|
|
|
|
| LEADER |
01457cam a22003137a 4500 |
| 008 |
130128s2011 njua b 001 0 eng d |
| 999 |
|
|
|c 335186
|d 335186
|
| 010 |
|
|
|a 2012472825
|
| 020 |
|
|
|a 9789814324786 (hbk.)
|
| 020 |
|
|
|a 9814324787 (hbk.)
|
| 035 |
|
|
|a (OCoLC)ocn644676723
|
| 042 |
|
|
|a lccopycat
|
| 082 |
0 |
4 |
|a 515.9
|2 22
|
| 100 |
1 |
|
|a Kim, Kang-Tae,
|
| 245 |
1 |
0 |
|a Schwarz's Lemma from a differential geometric viewpoint /
|c Kang-Tae Kim, Hanjin Lee.
|
| 260 |
|
|
|a Hackensack, NJ :
|b World Scientific,
|c c2011.
|
| 300 |
|
|
|a xvi, 82 p. :
|b ill. ;
|c 24 cm.
|
| 490 |
1 |
|
|a IISc lecture notes series ;
|v v. 2
|
| 504 |
|
|
|a Includes bibliographical references (p. 77-79) and index.
|
| 505 |
0 |
|
|a Some fundamentals -- Classical Schwarz's Lemma and the Poincaré metric -- Ahlfors' generalization -- Fundamentals of Hermitian and Kählerian geometry -- Chern-Lu formulae -- Tamed exhaustion and almost maximum principle -- General Schwarz's Lemma by Yau and Royden -- More recent developments.
|
| 650 |
|
0 |
|a Holomorphic functions.
|
| 650 |
|
0 |
|a Holomorphic mappings.
|
| 650 |
|
0 |
|a Schwarz function.
|
| 700 |
1 |
|
|a Lee, Hanjin.
|e Author.
|
| 942 |
|
|
|c BK
|
| 830 |
|
0 |
|a IISc lecture notes series ;
|v v. 2.
|
| 906 |
|
|
|a 7
|b cbc
|c copycat
|d 2
|e ncip
|f 20
|g y-gencatlg
|
| 955 |
|
|
|b xh58 2013-01-28 z-processor
|i xh14 2013-02-21 to CALM
|
| 952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 515_900000000000000
|7 0
|9 383492
|a MAT
|b MAT
|c ST1
|d 2019-05-13
|i 6031
|l 0
|o 515.9
|p MAT6031
|r 2019-05-13
|w 2019-05-13
|y BK
|