Nalaganje...

Real analysis through modern infinitesimals /

"Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each exter...

Popoln opis

Bibliografske podrobnosti
Glavni avtor: Vakil, Nader
Format: Printed Book
Jezik:English
Izdano: Cambridge ; New York : Cambridge University Press, 2011, ©2011
Serija:Encyclopedia of mathematics and its applications ; 140
Teme:
Online dostop:Cover image
LEADER 03602cam a2200313 i 4500
008 101129t20112011enk b 001 0 eng
999 |c 335180  |d 335180 
010 |a  2010050333 
020 |a 9781107002029 (hardback) 
042 |a pcc 
082 0 0 |a 515  |2 22 
084 |a MAT034000  |2 bisacsh 
100 1 |a Vakil, Nader, 
245 1 0 |a Real analysis through modern infinitesimals /  |c Nader Vakil. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011, ©2011 
300 |a xix, 565 pages ;  |c 24 cm. 
490 0 |a Encyclopedia of mathematics and its applications ;  |v 140 
504 |a Includes bibliographical references (pages 554-556) and index. 
505 8 |a Machine generated contents note: Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index. 
520 |a "Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses"-- 
520 |a "This book provides a course in mathematical analysis using the methods of modern infinitesimals, which are developed within the framework of internal set theory (IST), introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the author provides a careful development of the theory in which each external class is represented as a proper class. The basic standard and nonstandard properties of the real numbers follow, together with a thorough discussion of the central topics of analysis that begins with those usually discussed in an advanced undergraduate course and gradually moves to topics suitable for more advanced readers"-- 
650 0 |a Mathematical analysis. 
650 0 |a Set theory. 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh. 
856 4 2 |3 Cover image  |u http://assets.cambridge.org/97811070/02029/cover/9781107002029.jpg 
942 |c BK 
906 |a 7  |b cbc  |c orignew  |d 1  |e ecip  |f 20  |g y-gencatlg 
955 |b rg11 2010-11-29 (telework)  |c rg11 2010-11-29 ONIX (telework)  |a xe04 2011-05-18 2 copies rec'd., to CIP ver. 
952 |0 0  |1 0  |2 ddc  |4 0  |6 515_000000000000000  |7 0  |9 383484  |a MAT  |b MAT  |c ST1  |d 2019-05-13  |i 6027  |l 0  |o 515  |p MAT6027  |r 2019-05-13  |w 2019-05-13  |y BK