|
|
|
|
LEADER |
01782cam a22003257a 4500 |
008 |
110929s2011 njua b 001 0 eng d |
999 |
|
|
|c 335168
|d 335168
|
010 |
|
|
|a 2011499221
|
015 |
|
|
|a 2011M03478
|
016 |
7 |
|
|a 015996622
|2 Uk
|
020 |
|
|
|a 9789814304986
|
020 |
|
|
|a 9814304980
|
035 |
|
|
|a (OCoLC)ocn587124396
|
042 |
|
|
|a lccopycat
|
082 |
0 |
4 |
|a 515.9
|2 22
|
100 |
1 |
|
|a Ginzburg, D.
|
245 |
1 |
4 |
|a The descent map from automorphic representations of GL(n) to classical groups /
|c David Ginzburg, Stephen Rallis, David Soudry.
|
260 |
|
|
|a New Jersey :
|b World Scientific Pub.,
|c c2011.
|
300 |
|
|
|a ix, 339 p. :
|b ill. ;
|c 26 cm.
|
504 |
|
|
|a Includes bibliographical references (p. 335-338) and index.
|
505 |
0 |
|
|a 1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property --8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent.
|
650 |
|
0 |
|a L-functions.
|
650 |
|
0 |
|a Automorphic forms.
|
650 |
|
0 |
|a Representations of groups.
|
700 |
1 |
|
|a Rallis, Stephen,
|e Author.
|
700 |
1 |
|
|a Soudry, David,
|e Author.
|
942 |
|
|
|c BK
|
906 |
|
|
|a 7
|b cbc
|c copycat
|d 2
|e ncip
|f 20
|g y-gencatlg
|
955 |
|
|
|b xh58 2011-09-29 z-processor
|a xh00 2011-09-29 to USPL/STM
|b hc05 2013-05-23 z-processor
|i hc05 2013-05-23 to BCCD c. 1
|
952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 515_900000000000000
|7 0
|9 383467
|a MAT
|b MAT
|c ST1
|d 2019-05-13
|i 6035
|l 0
|o 515.9
|p MAT6035
|r 2019-05-13
|w 2019-05-13
|y BK
|