Loading...

Hypercomplex analysis : new perspectives and applications /

Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to t...

Full description

Bibliographic Details
Other Authors: Bernstein, Swanhild (Editor), Kähler, Uwe (Editor), Sabadini, Irene (Editor), Sommen, F. (Editor)
Format: Printed Book
Language:English
Published: New York: Birkhauser , 2014.
Series:Trends in mathematics.
Subjects:
LEADER 03242cam a22003977i 4500
008 140926t20142015sz a b 000 0 eng d
999 |c 334285  |d 334285 
010 |a  2014952606 
020 |a 9783319087702 (hardback : alk. paper) 
020 |a 3319087703 (hardback : alk. paper) 
020 |z 9783319087719 (ebook) 
020 |z 3319087711 (ebook) 
035 |a (OCoLC)ocn881450146 
042 |a lccopycat 
082 0 4 |a 004 
245 0 0 |a Hypercomplex analysis :  |b new perspectives and applications /  |c Swanhild Bernstein, Uwe Kähler, Irene Sabadini, Frank Sommen, editors. 
260 |a New York:  |b Birkhauser ,  |c 2014. 
300 |a vi, 227 pages :  |b illustrations ;  |c 24 cm 
490 1 |a Trends in mathematics,  |x 2297-0215 
504 |a Includes bibliographical references. 
505 0 |a Symmetries and associated pairs in quaternionic analysis -- Generalized quaternionic Schur functions in the ball and half-space and Krein-Langer factorization -- The Fock space in the slice hyperholomorphic setting -- Multi Mq-monogenic function in different dimension -- The fractional monogenic signal -- Weighted Bergman spaces -- On Appell sets and Verma modules for sl(2) -- Integral formulas for k-hypermonogenic functions in R3 -- Spectral properties of compact normal quaternionic operators -- Three-dimensional quaternionic analogue of the Kolosov?Muskhelishvili formulae -- On the continuous coupling of finite elements with holomorphic basis functions -- On psi-hyperholomorphic functions and a decomposition of harmonics -- Fractional Clifford analysis -- Spectral properties of differential equations in Clifford algebras -- Differential equations in multicomplex spaces. 
520 |a Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics. -- 
650 0 |a Functions of complex variables. 
650 0 |a Mathematical analysis. 
650 7 |a Functions of complex variables.  |2 fast 
650 7 |a Mathematical analysis.  |2 fast 
700 1 |a Bernstein, Swanhild  |e editor 
700 1 |a Kähler, Uwe  |e editor 
700 1 |a Sabadini, Irene,  |e editor. 
700 1 |a Sommen, F.,  |e editor. 
942 |c BK 
830 0 |a Trends in mathematics. 
906 |a 7  |b cbc  |c copycat  |d 2  |e epcn  |f 20  |g y-gencatlg 
955 |b rl09 2015-08-17 z-processor  |i rl09 2015-08-18 ; to CALM 
955 |a pc17 2014-09-26  |a rl00 2015-02-03 to SMA 
952 |0 0  |1 0  |2 ddc  |4 0  |6 004_000000000000000  |7 0  |9 382229  |a MAT  |b MAT  |c ST1  |d 2019-04-20  |i 7432  |l 0  |o 004  |p MAT7432  |r 2019-04-20  |w 2019-04-20  |y BK