Cargando...

Linear programming : an introduction to finite improvement algorithms /

"Suitable for undergraduate students of mathematics and graduate students of operations research and engineering, this text covers the basic theory and computation for a first course in linear programming. In addition to substantial material on mathematical proof techniques and sophisticated co...

Descripción completa

Detalles Bibliográficos
Autor principal: Solow, Daniel
Formato: Printed Book
Lenguaje:English
Publicado: Mineola , New York : Dover Publications , 2014 .
Edición:Second edition.
Materias:
LEADER 02208cam a2200301 i 4500
008 140429r20141984nyua b 001 0 eng
999 |c 334040  |d 334040 
010 |a  2014016975 
020 |a 9780486493763 (paperback) 
020 |a 0486493768 (paperback) 
042 |a pcc 
082 0 0 |a 519.7/2  |2 23 
084 |a MAT017000  |2 bisacsh 
100 1 |a Solow, Daniel . 
245 1 0 |a Linear programming :  |b an introduction to finite improvement algorithms /  |c Daniel Solow. 
250 |a Second edition. 
260 |a Mineola , New York :  |b Dover Publications ,  |c 2014 . 
300 |a xv, 414 pages :  |b illustrations ;  |c 23 cm 
500 |a "Second edition." 
500 |a Reprint of: New York : North-Holland, ©1984. With introduction and an appendix C. 
504 |a Includes bibliographical references and index. 
520 |a "Suitable for undergraduate students of mathematics and graduate students of operations research and engineering, this text covers the basic theory and computation for a first course in linear programming. In addition to substantial material on mathematical proof techniques and sophisticated computation methods, the treatment features numerous examples and exercises. An introductory chapter offers a systematic and organized approach to problem formulation. Subsequent chapters explore geometric motivation, proof techniques, linear algebra and algebraic steps related to the simplex algorithm, standard phase 1 problems, and computational implementation of the simplex algorithm. Additional topics include duality theory, issues of sensitivity and parametric analysis, techniques for handling bound constraints, and network flow problems. Helpful appendixes conclude the text, including a new addition that explains how to use Excel to solve linear programming problems"-- 
650 0 |a Linear programming. 
650 7 |a MATHEMATICS / Linear Programming.  |2 bisacsh 
942 |c BK 
906 |a 7  |b cbc  |c orignew  |d 1  |e ecip  |f 20  |g y-gencatlg 
955 |b rl07 2014-04-29  |i rl07 2014-04-30 ONIX to Dewey  |a xn12 2014-10-14 1 copy rec'd., to CIP ver. 
952 |0 0  |1 0  |2 ddc  |4 0  |6 519_700000000000000_2  |7 0  |9 381932  |a MAT  |b MAT  |c ST1  |d 2019-04-12  |i 7322  |l 0  |o 519.7/2  |p MAT7322  |r 2019-04-12  |w 2019-04-12  |y BK