Lanean...

Optimization /

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Build...

Deskribapen osoa

Xehetasun bibliografikoak
Egile nagusia: Lange, Kenneth
Formatua: Printed Book
Hizkuntza:English
Argitaratua: New York : Springer, c2013.
Edizioa:2nd ed.
Saila:Springer texts in statistics ; 95.
Gaiak:
LEADER 02922cam a22003377a 4500
008 120905s2013 nyua b 001 0 eng d
999 |c 136136  |d 136136 
010 |a  2012948598 
020 |a 9781461458371 (alk. paper) 
020 |a 1461458374 (alk. paper) 
020 |a 9781461458388 (ebk.) 
035 |a (OCoLC)ocn814705995 
042 |a lccopycat 
072 7 |a QA  |2 lcco 
082 0 4 |a 519.6  |2 22 
100 1 |a Lange, Kenneth. 
245 1 0 |a Optimization /  |c Kenneth Lange. 
250 |a 2nd ed. 
260 |a New York :  |b Springer,  |c c2013. 
300 |a xvii, 529 p. :  |b ill. ;  |c 24 cm 
490 1 |a Springer texts in statistics,  |x 1431-875X ;  |v 95 
504 |a Includes bibliographical references (p. 499-518) and index. 
505 0 |a 1. Elementary optimization -- 2. The seven c's of analysis -- 3. The gauge integral -- 4. Differentiation -- 5. Karush-Kuhn-Tucker theory -- 6. Convexity -- 7. Block relaxation -- 8. The MM algorithm -- 9. The EM algorithm -- 10. Newton's method and scoring -- 11. Conjugate gradient and quasi-Newton -- 12. Analysis of convergence -- 13. Penalty and barrier methods -- 14. Convex calculus -- 15. Feasibility and duality -- 16. Convex minimization algorithms -- 17. The calculus of variations -- Appendix. 
520 |a Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students' skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition, the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions -- 
650 0 |a Mathematical optimization. 
942 |c BK 
830 0 |a Springer texts in statistics ;  |v 95. 
906 |a 7  |b cbc  |c copycat  |d 2  |e epcn  |f 20  |g y-gencatlg 
955 |b rl09 2013-12-11 z-processor  |i rl09 2013-12-11 ; to CALM 
955 |a pc27 2012-09-05 
952 |0 0  |1 0  |4 0  |7 0  |9 150683  |a MAT  |b MAT  |c ST1  |d 2016-07-26  |g 2979.87  |i 6918  |l 0  |p MAT6918  |r 2016-07-26  |w 2016-07-26  |y BK