Carregando...

Foundations of geometric algebra computing /

"The author defines "Geometric Algebra Computing" as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a power...

ver descrição completa

Detalhes bibliográficos
Autor principal: Hildenbrand, Dietmar
Formato: Printed Book
Idioma:English
Publicado em: New York: Springer, 2013.
coleção:Geometry and computing ; 8.
Assuntos:
LEADER 03286cam a22003377i 4500
008 121101t20122012gw a b 001 0 eng d
999 |c 136076  |d 136076 
010 |a  2012953093 
016 7 |a 016148378  |2 Uk 
020 |a 9783642317934 (alk. paper) 
020 |a 3642317936 (alk. paper) 
035 |a (OCoLC)ocn802321515 
042 |a lccopycat 
082 0 4 |a 004.0151257  |2 23 
100 1 |a Hildenbrand, Dietmar, 
245 1 0 |a Foundations of geometric algebra computing /  |c Dietmar Hildenbrand. 
260 |a New York:  |b Springer,  |c 2013. 
300 |a xxvii, 196 pages :  |b illustrations (some color) ;  |c 24 cm. 
490 1 |a Geometry and computing,  |x 1866-6795 ;  |v v. 8 
504 |a Includes bibliographical references (pages 189-194) and index. 
505 0 |a Introduction -- Mathematical introduction -- Conformal geometric algebra -- Maple and the identification of quaternions and other algebras -- Fitting of planes or spheres to sets of points -- A tutorial on geometric algebra using CLUCalc -- Inverse kinematics of a simple robot -- Robot grasping an object -- Efficient computer animation application in CGA -- Using gaalop for high-performance geometric algebra computing -- Collision detection using the gaalop precompiler -- The gaalop precompiler for GPUs -- Molecular dynamics using gaalop GPC for OpenCL -- Geometric algebra computers. 
520 |a "The author defines "Geometric Algebra Computing" as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics."-- 
650 0 |a Clifford algebras  |x Data processing. 
650 7 |a Geometrische Algebra  |2 gnd 
650 7 |a Computeralgebra  |2 gnd 
942 |c BK 
830 0 |a Geometry and computing ;  |v 8. 
906 |a 7  |b cbc  |c copycat  |d 2  |e epcn  |f 20  |g y-gencatlg 
955 |b rl09 2015-01-15 z-processor  |i rl09 2015-01-22 ; to CALM  |a rl03 2018-03-07, updated author 
955 |a pc17 2012-11-01  |a qxh00 2013-04-09 to STM 
952 |0 0  |1 0  |4 0  |7 0  |9 150623  |a MAT  |b MAT  |c ST1  |d 2016-07-26  |g 2127.87  |i 6857  |l 0  |p MAT6857  |r 2016-07-26  |w 2016-07-26  |y BK