ロード中...

Discrete time series, processes, and applications in finance /

Most financial and investment decisions are based on considerations of possible future changes and require forecasts on the evolution of the financial world. Time series and processes are the natural tools for describing the dynamic behavior of financial data, leading to the required forecasts. This...

詳細記述

書誌詳細
第一著者: Zumbach, Gilles
フォーマット: Printed Book
言語:English
出版事項: Heidelberg ; New York : Springer, ©2013.
シリーズ:Springer finance.
主題:
オンライン・アクセス:Contributor biographical information
Publisher description
Table of contents only
LEADER 04551cam a22004217a 4500
008 120828s2013 gw a b 001 0 eng d
999 |c 136064  |d 136064 
010 |a  2012948091 
016 7 |a 016200470  |2 Uk 
020 |a 9783642317415 
020 |a 3642317413 
035 |a (OCoLC)ocn796762998 
042 |a lccopycat 
082 0 4 |a 330.01/5195  |2 23 
100 1 |a Zumbach, Gilles. 
245 1 0 |a Discrete time series, processes, and applications in finance /  |c Gilles Zumbach. 
260 |a Heidelberg ;  |a New York :  |b Springer,  |c ©2013. 
300 |a xxi, 319 pages :  |b color illustrations ;  |c 24 cm. 
490 1 |a Springer finance,  |x 1616-0533 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Notation, naming, and general definitions -- Stylized facts -- Empirical mug shots -- Process overview -- Logarithmic versus relative random walks -- ARCH processes -- Stochastic volatility processes -- Regime-switching process -- Price and volatility using high-frequency data -- Time-reversal asymmetry -- Characterizing heteroscedasticity -- The innovation distributions -- Leverage effect -- Processes and market risk evaluation -- Option pricing -- The empirical properties of large covariance matrices -- Multivariate ARCH processes -- The processes compatible with the stylized facts -- Further thoughts. 
520 |a Most financial and investment decisions are based on considerations of possible future changes and require forecasts on the evolution of the financial world. Time series and processes are the natural tools for describing the dynamic behavior of financial data, leading to the required forecasts. This book presents a survey of the empirical properties of financial time series, their descriptions by means of mathematical processes, and some implications for important financial applications used in many areas like risk evaluation, option pricing or portfolio construction. The statistical tools used to extract information from raw data are introduced. Extensive multiscale empirical statistics provide a solid benchmark of stylized facts (heteroskedasticity, long memory, fat-tails, leverage ...), in order to assess various mathematical structures that can capture the observed regularities. The author introduces a broad range of processes and evaluates them systematically against the benchmark, summarizing the successes and limitations of these models from an empirical point of view. The outcome is that only multiscale ARCH processes with long memory, discrete multiplicative structures and non-normal innovations are able to capture correctly the empirical properties. In particular, only a discrete time series framework allows to capture all the stylized facts in a process, whereas the stochastic calculus used in the continuum limit is too constraining. The present volume offers various applications and extensions for this class of processes including high-frequency volatility estimators, market risk evaluation, covariance estimation and multivariate extensions of the processes. The book discusses many practical implications and is addressed to practitioners and quants in the financial industry, as well as to academics, including graduate (Master or PhD level) students. The prerequisites are basic statistics and some elementary financial mathematics. Gilles Zumbach has worked for several institutions, including banks, hedge funds and service providers and continues to be engaged in research on many topics in finance. His primary areas of interest are volatility, ARCH processes and financial applications. 
650 0 |a Discrete-time systems. 
650 0 |a Business mathematics. 
650 0 |a Time-series analysis. 
650 0 |a Finance  |x Mathematical models. 
650 7 |a Business mathematics.  |2 fast 
650 7 |a Discrete-time systems.  |2 fast 
650 7 |a Finance  |x Mathematical models.  |2 fast 
650 7 |a Time-series analysis.  |2 fast 
856 4 2 |3 Contributor biographical information  |u https://www.loc.gov/catdir/enhancements/fy1616/2012948091-b.html 
856 4 2 |3 Publisher description  |u https://www.loc.gov/catdir/enhancements/fy1616/2012948091-d.html 
856 4 1 |3 Table of contents only  |u https://www.loc.gov/catdir/enhancements/fy1616/2012948091-t.html 
942 |c BK 
830 0 |a Springer finance. 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
955 |b xj16 2013-01-09 z-processor  |b rl02 2015-06-29 z-processor 
952 |0 0  |1 0  |4 0  |7 0  |9 150611  |a MAT  |b MAT  |c ST1  |d 2016-07-26  |g 3405.87  |i 6844  |l 0  |p MAT6844  |r 2016-07-26  |w 2016-07-26  |y BK