Loading...

Cryptography and secure communication /

Bibliographic Details
Main Author: Blahut, Richard E.
Format: Printed Book
Language:English
Published: New York: Cambridge University Press, 2014.
Subjects:
Table of Contents:
  • Machine generated contents note: 1.Introduction
  • 1.1.Classical cryptography
  • 1.2.Notions of cryptographic secrecy
  • 1.3.Block ciphers
  • 1.4.Stream ciphers
  • 1.5.Public-key cryptography
  • 1.6.Iterated and cascade ciphers
  • 1.7.Cryptanalysis
  • 1.8.Implementation attacks
  • 1.9.Complexity theory
  • 1.10.Authentication and identification
  • 1.11.Ownership protection
  • 1.12.Covert communications
  • 1.13.History of information protection
  • 2.The integers
  • 2.1.Basic number theory
  • 2.2.The euclidean algorithm
  • 2.3.Prime fields
  • 2.4.Quadratic residues
  • 2.5.Quadratic reciprocity
  • 2.6.The Jacobi symbol
  • 2.7.Primality testing
  • 2.8.The Fermat algorithm
  • 2.9.The Solovay--Strassen algorithm
  • 2.10.The Miller--Rabin algorithm
  • 2.11.Factoring of integers
  • 2.12.The Pollard algorithm for factoring
  • 2.13.Square roots in a prime field
  • 3.Cryptography based on the integer ring
  • 3.1.Biprime cryptography
  • 3.2.Implementing biprime cryptography
  • Contents note continued: 3.3.Protocol attacks on biprime cryptography
  • 3.4.Direct attacks on biprime encryption
  • 3.5.Factoring biprimes
  • 3.6.The quadratic sieve
  • 3.7.The number-field sieve
  • 3.8.The Rabin cryptosystem
  • 3.9.The rise and fall of knapsack cryptosystems
  • 4.Cryptography based on the discrete logarithm
  • 4.1.Diffie--Hellman key exchange
  • 4.2.Discrete logarithms
  • 4.3.The Elgamal cryptosystem
  • 4.4.Trapdoor one-way functions
  • 4.5.The Massey--Omura cryptosystem
  • 4.6.The Pohlig--Hellman algorithm
  • 4.7.The Shanks algorithm
  • 4.8.The Pollard algorithm for discrete logarithms
  • 4.9.The method of index calculus
  • 4.10.Complexity of the discrete-log problem
  • 5.Information-theoretic methods in cryptography
  • 5.1.Probability space
  • 5.2.Entropy
  • 5.3.Perfect secrecy
  • 5.4.The Shannon--McMillan theorem
  • 5.5.Unicity distance
  • 5.6.Entropy of natural language
  • 5.7.Entropy expansion
  • 5.8.Data compaction
  • 5.9.The wiretap channel
  • Contents note continued: 6.Block ciphers
  • 6.1.Block substitution
  • 6.2.The Feistel network
  • 6.3.The Data Encryption Standard
  • 6.4.Using the Data Encryption Standard
  • 6.5.Double and triple DES encryption
  • 6.6.The Advanced Encryption Standard
  • 6.7.Differential cryptanalysis
  • 6.8.Linear cryptanalysis
  • 7.Stream ciphers
  • 7.1.State-dependent encryption
  • 7.2.Additive stream ciphers
  • 7.3.Linear shift-register sequences
  • 7.4.The linear-complexity attack
  • 7.5.Analysis of linear complexity
  • 7.6.Keystreams from nonlinear feedback
  • 7.7.Keystreams from nonlinear combining
  • 7.8.Keystreams from nonlinear functions
  • 7.9.The correlation attack
  • 7.10.Pseudorandom sequences
  • 7.11.Nonlinear sets of sequences
  • 8.Authentication and ownership protection
  • 8.1.Authentication
  • 8.2.Identification
  • 8.3.Authentication signatures
  • 8.4.Hash functions
  • 8.5.The birthday attack
  • 8.6.Iterated hash constructions
  • 8.7.Formal hash functions
  • Contents note continued: 8.8.Practical hash functions
  • 9.Groups, rings, and fields
  • 9.1.Groups
  • 9.2.Rings
  • 9.3.Fields
  • 9.4.Prime fields
  • 9.5.Binary fields and ternary fields
  • 9.6.Univariate polynomials
  • 9.7.Extension fields
  • 9.8.The multiplication cycle in a finite field
  • 9.9.Cyclotomic polynomials
  • 9.10.Vector spaces
  • 9.11.Linear algebra
  • 9.12.The Fourier transform
  • 9.13.Existence of finite fields
  • 9.14.Bivariate polynomials
  • 9.15.Modular reduction and quotient groups
  • 9.16.Factoring of univariate polynomials
  • 10.Cryptography based on elliptic curves
  • 10.1.Elliptic curves
  • 10.2.Elliptic curves over finite fields
  • 10.3.The operation of point addition
  • 10.4.The order of an elliptic curve
  • 10.5.The group of an elliptic curve
  • 10.6.Supersingular elliptic curves
  • 10.7.Elliptic curves over binary fields
  • 10.8.Computation of point multiples
  • 10.9.Elliptic curve cryptography
  • 10.10.The projective plane
  • Contents note continued: 10.11.Point counting in an extension field
  • 10.12.Morphisms of elliptic curves over the rationals
  • 10.13.Morphisms of elliptic curves over finite fields
  • 10.14.Point counting in a ground field
  • 10.15.The method of xedni calculus
  • 10.16.Elliptic curves and the complex field
  • 10.17.Curves constructed using complex multiplication
  • 11.Cryptography based on hyperelliptic curves
  • 11.1.Hyperelliptic curves
  • 11.2.Coordinate rings and function fields
  • 11.3.Poles and zeros
  • 11.4.Divisors
  • 11.5.Principal divisors
  • 11.6.Principal divisors on elliptic curves
  • 11.7.Jacobians as quotient groups
  • 11.8.The group of a hyperelliptic curve
  • 11.9.Semireduced divisors and jacobians
  • 11.10.The Mumford transform
  • 11.11.The Cantor reduction algorithm
  • 11.12.Reduced divisors and jacobians
  • 11.13.The Cantor--Koblitz algorithm
  • 11.14.Hyperelliptic-curve cryptography
  • 11.15.Order of the hyperelliptic jacobians
  • Contents note continued: 11.16.Some examples of the jacobian group
  • 12.Cryptography based on bilinear pairings
  • 12.1.Bilinear pairings
  • 12.2.Pairing-based cryptography
  • 12.3.Pairing-based key exchange
  • 12.4.Identity-based encryption
  • 12.5.Pairing-based signatures
  • 12.6.Attacks on the bilinear Diffie--Hellman protocol
  • 12.7.Torsion points and embedding degree
  • 12.8.The torsion structure theorem
  • 12.9.The structure of a pairing
  • 12.10.Attacks using bilinear pairings
  • 12.11.The Tate pairing
  • 12.12.The Miller algorithm
  • 12.13.The Weil pairing
  • 12.14.Pairing-friendly curves
  • 12.15.Barreto--Naehrig elliptic curves
  • 12.16.More pairing-friendly curves
  • 13.Implementation
  • 13.1.Pairing enhancements
  • 13.2.Accelerated pairings
  • 13.3.Doubling and tripling
  • 13.4.Point representations
  • 13.5.Algorithms for elliptic-curve arithmetic
  • 13.6.Modular addition in an integer ring
  • 13.7.Modular multiplication in an integer ring
  • Contents note continued: 13.8.Representations of binary fields
  • 13.9.Multiplication and squaring in a binary field
  • 13.10.Complementary bases
  • 13.11.Division in a finite field
  • 14.Cryptographic protocols for security and identification
  • 14.1.Protocols for cryptographic security
  • 14.2.Identification protocols
  • 14.3.Zero-knowledge protocols
  • 14.4.Methods of secure identification
  • 14.5.Signature protocols
  • 14.6.Protocols for secret sharing
  • 15.More public-key cryptography
  • 15.1.Introduction to lattices
  • 15.2.Elementary problems in lattice theory
  • 15.3.Reduction of a lattice basis
  • 15.4.Lattice-based cryptography
  • 15.5.Attacks on lattice cryptosystems
  • 15.6.Introduction to codes
  • 15.7.Subspace projection
  • 15.8.Code-based cryptography.