Loading...
Cryptography and secure communication /
Main Author: | |
---|---|
Format: | Printed Book |
Language: | English |
Published: |
New York:
Cambridge University Press,
2014.
|
Subjects: |
Table of Contents:
- Machine generated contents note: 1.Introduction
- 1.1.Classical cryptography
- 1.2.Notions of cryptographic secrecy
- 1.3.Block ciphers
- 1.4.Stream ciphers
- 1.5.Public-key cryptography
- 1.6.Iterated and cascade ciphers
- 1.7.Cryptanalysis
- 1.8.Implementation attacks
- 1.9.Complexity theory
- 1.10.Authentication and identification
- 1.11.Ownership protection
- 1.12.Covert communications
- 1.13.History of information protection
- 2.The integers
- 2.1.Basic number theory
- 2.2.The euclidean algorithm
- 2.3.Prime fields
- 2.4.Quadratic residues
- 2.5.Quadratic reciprocity
- 2.6.The Jacobi symbol
- 2.7.Primality testing
- 2.8.The Fermat algorithm
- 2.9.The Solovay--Strassen algorithm
- 2.10.The Miller--Rabin algorithm
- 2.11.Factoring of integers
- 2.12.The Pollard algorithm for factoring
- 2.13.Square roots in a prime field
- 3.Cryptography based on the integer ring
- 3.1.Biprime cryptography
- 3.2.Implementing biprime cryptography
- Contents note continued: 3.3.Protocol attacks on biprime cryptography
- 3.4.Direct attacks on biprime encryption
- 3.5.Factoring biprimes
- 3.6.The quadratic sieve
- 3.7.The number-field sieve
- 3.8.The Rabin cryptosystem
- 3.9.The rise and fall of knapsack cryptosystems
- 4.Cryptography based on the discrete logarithm
- 4.1.Diffie--Hellman key exchange
- 4.2.Discrete logarithms
- 4.3.The Elgamal cryptosystem
- 4.4.Trapdoor one-way functions
- 4.5.The Massey--Omura cryptosystem
- 4.6.The Pohlig--Hellman algorithm
- 4.7.The Shanks algorithm
- 4.8.The Pollard algorithm for discrete logarithms
- 4.9.The method of index calculus
- 4.10.Complexity of the discrete-log problem
- 5.Information-theoretic methods in cryptography
- 5.1.Probability space
- 5.2.Entropy
- 5.3.Perfect secrecy
- 5.4.The Shannon--McMillan theorem
- 5.5.Unicity distance
- 5.6.Entropy of natural language
- 5.7.Entropy expansion
- 5.8.Data compaction
- 5.9.The wiretap channel
- Contents note continued: 6.Block ciphers
- 6.1.Block substitution
- 6.2.The Feistel network
- 6.3.The Data Encryption Standard
- 6.4.Using the Data Encryption Standard
- 6.5.Double and triple DES encryption
- 6.6.The Advanced Encryption Standard
- 6.7.Differential cryptanalysis
- 6.8.Linear cryptanalysis
- 7.Stream ciphers
- 7.1.State-dependent encryption
- 7.2.Additive stream ciphers
- 7.3.Linear shift-register sequences
- 7.4.The linear-complexity attack
- 7.5.Analysis of linear complexity
- 7.6.Keystreams from nonlinear feedback
- 7.7.Keystreams from nonlinear combining
- 7.8.Keystreams from nonlinear functions
- 7.9.The correlation attack
- 7.10.Pseudorandom sequences
- 7.11.Nonlinear sets of sequences
- 8.Authentication and ownership protection
- 8.1.Authentication
- 8.2.Identification
- 8.3.Authentication signatures
- 8.4.Hash functions
- 8.5.The birthday attack
- 8.6.Iterated hash constructions
- 8.7.Formal hash functions
- Contents note continued: 8.8.Practical hash functions
- 9.Groups, rings, and fields
- 9.1.Groups
- 9.2.Rings
- 9.3.Fields
- 9.4.Prime fields
- 9.5.Binary fields and ternary fields
- 9.6.Univariate polynomials
- 9.7.Extension fields
- 9.8.The multiplication cycle in a finite field
- 9.9.Cyclotomic polynomials
- 9.10.Vector spaces
- 9.11.Linear algebra
- 9.12.The Fourier transform
- 9.13.Existence of finite fields
- 9.14.Bivariate polynomials
- 9.15.Modular reduction and quotient groups
- 9.16.Factoring of univariate polynomials
- 10.Cryptography based on elliptic curves
- 10.1.Elliptic curves
- 10.2.Elliptic curves over finite fields
- 10.3.The operation of point addition
- 10.4.The order of an elliptic curve
- 10.5.The group of an elliptic curve
- 10.6.Supersingular elliptic curves
- 10.7.Elliptic curves over binary fields
- 10.8.Computation of point multiples
- 10.9.Elliptic curve cryptography
- 10.10.The projective plane
- Contents note continued: 10.11.Point counting in an extension field
- 10.12.Morphisms of elliptic curves over the rationals
- 10.13.Morphisms of elliptic curves over finite fields
- 10.14.Point counting in a ground field
- 10.15.The method of xedni calculus
- 10.16.Elliptic curves and the complex field
- 10.17.Curves constructed using complex multiplication
- 11.Cryptography based on hyperelliptic curves
- 11.1.Hyperelliptic curves
- 11.2.Coordinate rings and function fields
- 11.3.Poles and zeros
- 11.4.Divisors
- 11.5.Principal divisors
- 11.6.Principal divisors on elliptic curves
- 11.7.Jacobians as quotient groups
- 11.8.The group of a hyperelliptic curve
- 11.9.Semireduced divisors and jacobians
- 11.10.The Mumford transform
- 11.11.The Cantor reduction algorithm
- 11.12.Reduced divisors and jacobians
- 11.13.The Cantor--Koblitz algorithm
- 11.14.Hyperelliptic-curve cryptography
- 11.15.Order of the hyperelliptic jacobians
- Contents note continued: 11.16.Some examples of the jacobian group
- 12.Cryptography based on bilinear pairings
- 12.1.Bilinear pairings
- 12.2.Pairing-based cryptography
- 12.3.Pairing-based key exchange
- 12.4.Identity-based encryption
- 12.5.Pairing-based signatures
- 12.6.Attacks on the bilinear Diffie--Hellman protocol
- 12.7.Torsion points and embedding degree
- 12.8.The torsion structure theorem
- 12.9.The structure of a pairing
- 12.10.Attacks using bilinear pairings
- 12.11.The Tate pairing
- 12.12.The Miller algorithm
- 12.13.The Weil pairing
- 12.14.Pairing-friendly curves
- 12.15.Barreto--Naehrig elliptic curves
- 12.16.More pairing-friendly curves
- 13.Implementation
- 13.1.Pairing enhancements
- 13.2.Accelerated pairings
- 13.3.Doubling and tripling
- 13.4.Point representations
- 13.5.Algorithms for elliptic-curve arithmetic
- 13.6.Modular addition in an integer ring
- 13.7.Modular multiplication in an integer ring
- Contents note continued: 13.8.Representations of binary fields
- 13.9.Multiplication and squaring in a binary field
- 13.10.Complementary bases
- 13.11.Division in a finite field
- 14.Cryptographic protocols for security and identification
- 14.1.Protocols for cryptographic security
- 14.2.Identification protocols
- 14.3.Zero-knowledge protocols
- 14.4.Methods of secure identification
- 14.5.Signature protocols
- 14.6.Protocols for secret sharing
- 15.More public-key cryptography
- 15.1.Introduction to lattices
- 15.2.Elementary problems in lattice theory
- 15.3.Reduction of a lattice basis
- 15.4.Lattice-based cryptography
- 15.5.Attacks on lattice cryptosystems
- 15.6.Introduction to codes
- 15.7.Subspace projection
- 15.8.Code-based cryptography.