Wordt geladen...

Sets of finite perimeter and geometric variational problems : an introduction to geometric measure theory /

"The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic t...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteur: Maggi, Francesco
Formaat: Printed Book
Taal:English
Gepubliceerd in: New York : Cambridge University Press, 2012.
Reeks:Cambridge studies in advanced mathematics ; 135
Onderwerpen:
Online toegang:Table of contents only
Contributor biographical information
Cover image
Publisher description
LEADER 02698cam a2200313 i 4500
008 120511s2012 nyu b 001 0 eng
010 |a  2012018822 
020 |a 9781107021037 (hardback) 
042 |a pcc 
082 0 0 |a 515/.42  |2 23 
084 |a 49Q15  |2 msc 
100 1 |a Maggi, Francesco, 
245 1 0 |a Sets of finite perimeter and geometric variational problems :  |b an introduction to geometric measure theory /  |c Francesco Maggi, Università degli Studi di Firenze, Italy. 
260 |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a xix, 454 pages ;  |c 24 cm. 
490 0 |a Cambridge studies in advanced mathematics ;  |v 135 
504 |a Includes bibliographical references (pages 445-452) and index. 
520 |a "The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory"-- 
650 0 |a Geometric measure theory. 
650 7 |a MATHEMATICS / Mathematical Analysis.  |2 bisacsh 
856 4 1 |3 Table of contents only  |u http://www.loc.gov/catdir/enhancements/fy1210/2012018822-t.html 
856 4 2 |3 Contributor biographical information  |u http://www.loc.gov/catdir/enhancements/fy1210/2012018822-b.html 
856 4 2 |3 Cover image  |u http://assets.cambridge.org/97811070/21037/cover/9781107021037.jpg 
856 4 2 |3 Publisher description  |u http://www.loc.gov/catdir/enhancements/fy1210/2012018822-d.html 
906 |a 7  |b cbc  |c orignew  |d 1  |e ecip  |f 20  |g y-gencatlg 
942 |c BK 
955 |b rg11 2012-05-11 (telework)  |c rg11 2012-05-11 ONIX (telework) to Gen Sci/Tech (STM)  |a xn07 2012-12-06 1 copy rec'd., to CIP ver. 
999 |c 135820  |d 135820 
952 |0 0  |1 0  |4 0  |6 49Q_MAG  |7 0  |9 150359  |a MAT  |b MAT  |c ST1  |d 2014-11-22  |i 6498  |l 0  |o 49Q MAG  |p MAT6498  |r 2014-11-22  |w 2018-08-20  |y BK