Načítá se...

Dense sphere packings : a blueprint for formal proofs /

"The 400-year-old Kepler conjecture asserts that no packing of congruent balls in three dimensions can have a density exceeding the familiar pyramid-shaped cannonball arrangement. In this book, a new proof of the conjecture is presented that makes it accessible for the first time to a broad mat...

Celý popis

Podrobná bibliografie
Hlavní autor: Hales, Thomas Callister
Médium: Printed Book
Jazyk:English
Vydáno: Cambridge ; New York : Cambridge University Press, 2012.
Edice:London Mathematical Society lecture note series ; 400.
Témata:
LEADER 02142cam a22003137a 4500
008 130313s2012 enka b 001 0 eng d
010 |a  2012538866 
016 7 |a 016188941  |2 Uk 
020 |a 0521617707 (pbk.) 
020 |a 9780521617703 (pbk.) 
035 |a (OCoLC)ocn793221654 
042 |a lccopycat 
084 |2 msc 
100 1 |a Hales, Thomas Callister. 
245 1 0 |a Dense sphere packings :  |b a blueprint for formal proofs /  |c Thomas C. Hales. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a xiv, 271 p. :  |b ill. ;  |c 23 cm. 
490 1 |a London Mathematical Society lecture note series ;  |v 400 
504 |a Includes bibliographical references (p. [261]-263) and indexes. 
505 0 |a 1. Close packing -- 2. Trigonometry -- 3. Volume -- 4. Hypermap -- 5. Fan -- 6. Packing - -7. Local fan -- 8. Tame hypermap. 
520 |a "The 400-year-old Kepler conjecture asserts that no packing of congruent balls in three dimensions can have a density exceeding the familiar pyramid-shaped cannonball arrangement. In this book, a new proof of the conjecture is presented that makes it accessible for the first time to a broad mathematical audience. The book also presents solutions to other previously unresolved conjectures in discrete geometry, including the strong dodecahedral conjecture on the smallest surface area of a Voronoi cell in a sphere packing. This book is also currently being used as a blueprint for a large-scale formal proof project, which aims to check every logical inference of the proof of the Kepler conjecture by computer. This is an indispensable resource for those who want to be brought up to date with research on the Kepler conjecture"--P. [4] of cover. 
650 0 |a Kepler's conjecture. 
650 0 |a Sphere packings. 
830 0 |a London Mathematical Society lecture note series ;  |v 400. 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
942 |c BK 
955 |b xh58 2013-03-13 z-processor  |i xh58 2013-03-13 ; to Dewey 
999 |c 135787  |d 135787 
952 |0 0  |1 0  |4 0  |7 0  |9 150306  |a MAT  |b MAT  |c ST1  |d 2014-01-15  |g 3356.50  |i 6460  |l 0  |p MAT6460  |r 2014-01-15  |w 2014-01-15  |y BK