載入...
LEADER 01900cam a22003615a 4500
008 130307s2012 enk b 001 0 eng d
010 |a  2012289799 
016 7 |a 016098955  |2 Uk 
020 |a 1107024811 
020 |a 9781107024816 
035 |a (OCoLC)ocn793221619 
042 |a lccopycat 
082 0 4 |a 512.2  |2 23 
084 |2 msc  |a 20 
100 1 |a Chiswell, Ian, 
245 1 2 |a A universal construction for groups acting freely on real trees /  |c Ian Chiswell and Thomas Müller. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a xiii, 285 p. ;  |c 24 cm. 
490 1 |a Cambridge tracts in mathematics ;  |v 195 
504 |a Includes bibliographical references (p. [279]-281) and index. 
505 0 |a 1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices. 
650 0 |a Geometric group theory. 
650 0 |a Trees (Graph theory) 
700 1 |a Müller, T. W. 
830 0 |a Cambridge tracts in mathematics ;  |v 195. 
856 4 1 |u http://www.loc.gov/catdir/enhancements/fy1308/2012289799-t.html 
856 4 2 |u http://www.loc.gov/catdir/enhancements/fy1308/2012289799-b.html 
856 4 2 |u http://www.loc.gov/catdir/enhancements/fy1308/2012289799-d.html 
906 |a 0  |b ibc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
942 |c BK 
955 |b xe10 2013-03-07 z-processor 2 copies to USPL  |a xh00 2013-03-12 to STM 
999 |c 135784  |d 135784 
952 |0 0  |1 0  |4 0  |6 20_000000000000000_CHI  |7 0  |9 150303  |a MAT  |b MAT  |c ST1  |d 2013-11-01  |i 6502  |l 1  |o 20 CHI  |p MAT6502  |r 2014-01-31  |s 2013-11-01  |w 2018-08-20  |y BK