Cargando...

Lattices and ordered sets /

"...A thorough introduction to the subject of ordered sets and lattices, with an emphasis on the latter. Topic coverage includes: modular, semimodular and distributive lattices, boolean algebras, representation of distributive lattices, algebraic lattices, congruence relations on lattices, free...

Descrición completa

Detalles Bibliográficos
Autor Principal: Roman, Steven
Formato: Printed Book
Idioma:English
Publicado: New York : Springer, 2008
Subjects:
Acceso en liña:http://www.loc.gov/catdir/enhancements/fy1008/2008928921-t.html
http://www.loc.gov/catdir/enhancements/fy1008/2008928921-d.html
LEADER 01506cam a22003017a 4500
008 080509s2008 nyua b 001 0 eng d
010 |a  2008928921 
020 |a 0387789006 
020 |a 9780387789002 
035 |a (OCoLC)ocn261123137 
042 |a lccopycat 
082 0 4 |a 511.32  |2 22 
084 |2 msc 
100 1 |a Roman, Steven. 
245 1 0 |a Lattices and ordered sets /  |c Steven Roman. 
260 |a New York :  |b Springer,  |c 2008 
300 |a xiv, 305 p. :  |b ill. ;  |c 24 cm. 
504 |a Includes bibliographical references (p. [293]-296) and index. 
520 |a "...A thorough introduction to the subject of ordered sets and lattices, with an emphasis on the latter. Topic coverage includes: modular, semimodular and distributive lattices, boolean algebras, representation of distributive lattices, algebraic lattices, congruence relations on lattices, free lattices, fixed-point theorems, duality theory and more..." 
650 0 |a Lattice theory. 
650 0 |a Ordered sets. 
856 4 1 |u http://www.loc.gov/catdir/enhancements/fy1008/2008928921-t.html 
856 4 2 |u http://www.loc.gov/catdir/enhancements/fy1008/2008928921-d.html 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
942 |c BK 
955 |b xh57 2010-03-06 z-processor  |i xh57 2010-03-06 to BCCD  |a xh00 2010-10-28  |a xh14 2011-03-16 discard copy 3 
999 |c 135379  |d 135379 
952 |0 0  |1 0  |4 0  |6 06_000000000000000_ROM  |7 0  |9 149727  |a MAT  |b MAT  |c GEN  |d 2012-12-15  |i 5846  |l 8  |m 1  |o 06 ROM  |p MAT5846  |r 2021-12-08  |s 2020-09-29  |w 2013-08-01  |y BK