Lanean...

Real Mathematical Analysis /

Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields o...

Deskribapen osoa

Xehetasun bibliografikoak
Egile nagusia: Pugh, Charles Chapman
Erakunde egilea: SpringerLink (Online service)
Formatua: Printed Book
Hizkuntza:English
Argitaratua: New Delhi : Springer , 2002.
Saila:Undergraduate texts in mathematics.
Gaiak:
LEADER 02369cam a2200337Mi 4500
006 m o d
007 cr un|||||||||
008 130321s2002 nyua o 000 0 eng
020 |a 9780387216843 
020 |a 9788181282354 
035 |a (OCoLC)ocn853260206 
082 0 4 |a 515.8  |2 23 
084 |2 msc  |a 26-01 
100 1 |a Pugh, Charles Chapman. 
245 1 0 |a Real Mathematical Analysis /  |c by Charles Chapman Pugh. 
260 |a New Delhi :  |b Springer ,  |c 2002. 
300 |a xi, 437 p. :  |b 133 illustrations. 
490 1 |a Undergraduate texts in mathematics,  |x 0172-6056 
505 0 |a Real Numbers -- A Taste of Topology -- Functions of a Real Variable -- Function Spaces -- Multivariable Calculus -- Lebesgue Theory -- Index. 
520 |a Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past presentations of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians such as Dieudonne, Littlewood and Osserman. This book is based on the honors version of a course which the author has taught many times over the last 35 years at Berkeley. The book contains an excellent selection of more than 500 exercises. 
650 0 |a Real analysis 
650 7 |a Mathematics.  |2 fast 
655 4 |a Electronic books. 
710 2 |a SpringerLink (Online service) 
776 0 8 |i Print version:  |z 9781441929419 
830 0 |a Undergraduate texts in mathematics. 
852 8 |b eresour-nc  |h Online Resource  |t 1  |z Accessible anywhere on campus or with UIUC NetID 
942 |c BK 
999 |c 132607  |d 132607 
952 |0 0  |1 0  |4 0  |6 26_000000000000000_PUG  |7 0  |9 146841  |a MAT  |b MAT  |c ST1  |d 2012-07-10  |i 3312  |l 2  |o 26 PUG  |p MAT3312  |r 2017-10-04  |s 2017-09-28  |w 2013-08-01  |y BK 
952 |0 0  |1 0  |4 0  |6 2601_PUG  |7 0  |9 146842  |a MAT  |b MAT  |c ST1  |d 2016-01-06  |i 6690  |l 0  |o 26-01 PUG  |p MAT6690  |r 2016-01-06  |w 2016-01-06  |y BK