Loading...

Computational quantum chemistry : an interactive guide to basis set theory /

Bibliographic Details
Main Author: Quinn, Charles M.
Format: Printed Book
Published: San Diego, Calif. : Academic Press, c2002.
Subjects:
Online Access:Table of contents
Publisher description
LEADER 04049 a2200229 4500
020 |a 0125696825 (w/CDROM component : acidfree paper) 
020 |a 0125696833 (printed on CD) 
020 |a 9780125696821 
100 1 |a Quinn, Charles M. 
245 1 0 |a Computational quantum chemistry :  |b an interactive guide to basis set theory /  |c Charles M. Quinn. 
260 |a San Diego, Calif. :  |b Academic Press,  |c c2002.  |9 1519 
300 |a viii, 237 p. :  |b col. ill. ;  |c 25 cm. + 
504 |a Includes bibliographical references (p. [229]-230) and index. 
505 8 |a Machine generated contents note: 1 Essential atomic orbital theory -- 11 Atomic orbitals for the hydrogen atom -- 12 Radial distribution functions for the hydrogen atom -- 13 Radial wave functions for many-electron atoms -- 14 Slater-type orbitals -- 15 Gaussian-type functions-the Isto-3g) minimal basis set -- 16 isto-ng) basis sets -- 17 Scaling factors -- 18 The (4s/2s) basis set, polarization and scaling factors for molecular -- environments -- 19 Gaussian-lobe and other Gaussian basis sets -- 2 Numerical integration -- 21 Numerical integration -- 22 Application of Simpson's rule to calculate a normalization integral -- 23 Calculations of normalization constants over the angular coordinates -- 24 Numerical integration in a cylindrical volume: diatomic and linear -- molecular geometries -- 25 Calculation of the overlap integral between Is orbitals in a Gaussian -- basis -- 26 Designing Gaussian basis sets to model Slater orbitals -- 3 Orthonormality -- 31 Orthonormality in Slater orbital and basis set theory -- 32 Orthonormality and Slater orbitals -- 33 Orthonormality and Gaussian orbitals -- 34 Orthonormality and double-zeta Slater orbitals -- 35 Orthonormality and split-basis or double-zeta Gaussian basis sets -- 36 The Jacobi transformation, diagonalization of a symmetric matrix and -- canonical orthogonalization -- 37 The S-1/2 'trick' -- 38 Symmetric orthonormalization -- 4 The hydrogen atom -numerical solutions -- 41 Eigenvalue calculations for hydrogen based on analytical functions -- 42 Calculations using Slater orbitals -- 43 Calculations with Gaussian functions -- 44 Calculations with split-basis [split-valence] sets -- 45 Review of results for the ls and 2s orbital energies in hydrogen -- 5 The helium atom and the self-consistent field -- 51 Hartree's analysis of the helium atom problem -- 52 Calculations with modified hydrogen atom wave functions -- 53 The Hall-Roothaan equations, the orbital approximation and -- the modem Hartree-Fock self-consistent field method -- 54 Calculations using Slater DZ functions -- 55 Gaussian basis set calculations for the helium atom-two-electron -- integrals over Gaussian basis functions -- 56 A HFS-SCF calculation with split-basis 14-31) for helium -- 57 Helium, singlet and triplet excited states, electron spin and the role -- of the Exchange integral -- 6 One- and two-electron diatoms -- 61 Calculations using hydrogen Is orbitals -- 62 Sto-3g calculations for H2+ -- 63 Calculations using Gaussian basis sets with the exact evaluation of -- integrals using Fourier transforms -- 64 Calculations involving the two-electron terms; the Isto-3g) -- HF-SCF results for dihydrogen -- 65 The standard form for the results of HFS-SCF calculations -- 66 The Isto-3g) HFS-SCF calculation for HeH+ -- 67 Polarization functions, Gaussian lobes and higher-order Gaussian -- basis sets -- 68 Epilogue. 
650 0 |a Gaussian basis sets (Quantum mechanics) 
650 0 |a Quantum chemistry 
856 4 1 |3 Table of contents  |u http://www.loc.gov/catdir/toc/fy031/2001091370.html 
856 4 2 |3 Publisher description  |u http://www.loc.gov/catdir/description/els031/2001091370.html 
906 |a 7  |b cbc  |c orignew  |d 2  |e epcn  |f 20  |g y-gencatlg 
955 |a pc22 05-21-01  |a pv11 2002-04-27 to ASCD  |i jp99 2002-04-29  |a jp10 2002-06-04 to BCCD  |a aa01 2002-07-10 
999 |c 120944  |d 120944 
952 |0 0  |1 0  |4 0  |6 541_280000000000000_QUI_C  |7 0  |9 133029  |a CHE  |b CHE  |c REF  |d 2018-08-15  |i 4572  |l 2  |m 2  |o 541.28 QUI/C  |p CHE4572  |r 2013-03-20  |s 2009-11-26  |w 2013-03-02  |y REF