Loading...

Probability models for computer science /

Bibliographic Details
Main Author: Ross, Sheldon M.
Format: Printed Book
Published: New Delhi : Elsevier, c2002.
Subjects:
Online Access:http://www.loc.gov/catdir/description/els031/2001089413.html
http://www.loc.gov/catdir/toc/fy02/2001089413.html
Table of Contents:
  • Machine generated contents note: 1 Probability 1
  • 1.1 Axioms of Probability 1
  • 1.2 Conditional Probability and Independence 1
  • 1.3 Random Variables 2
  • 1.4 Expected Value and Variance 5
  • 1.4.1 Expected Value and Variance of Sums of Random Variables 7
  • 1.5 Moment-Generating Functions and Laplace Transforms 17
  • 1.6 Conditional Expectation 20
  • 1.7 Exponential Random Variables 32
  • 1.8 Limit Theorems 41
  • 1.8.1 Stopping Times and Wald's Equation 42
  • Exercises 43
  • 2 Some Examples 49
  • 2.1 A Random Graph 49
  • 2.2 The Quicksort and Find Algorithms 55
  • 2.2.1 The Find Algorithm 58
  • 2.3 A Self-Organizing List Model 61
  • 2.4 Random Permutations 62
  • 2.4.1 Inversions 66
  • 2.4.2 Increasing Subsequences 69
  • Exercises 71
  • 3 Probability Bounds, Approximations,
  • and Computations 75
  • 3.1 'ail Probability Inequalities 75
  • 3.1.1 Markov's Inequality 75
  • 3.1.2 Chernoff Bounds 76
  • 3.1.3 Jensen's Inequality 79
  • 3.2 The Second Moment and the Conditional
  • Expectation Inequality 79
  • 3.3 Probability Bounds via the Importance Sampling Identity 87
  • 3.4 Poisson Random Variables and the Poisson Paradigm 89
  • 3.5 Compound Poisson Random Variables 94
  • 3.5.1 A Second Representation when the Component
  • Distribution Is Discrete 95
  • 3.5.2 A Compound Poisson identity 96
  • Exercises 100
  • 4 Markov Chains 103
  • 4.1 Introduction 103
  • 4.2 Chapman-Kolmogorov Equations 105
  • 4.3 Classification of States 106
  • 4.4 Limiting and Stationary Probabilities 115
  • 4.5 Some Applications 121
  • 4.5.1 Models for Algorithmic Efficiency 121
  • 4.5.2 Using a Random Walk to Analyze a Probabilistic Algorithm
  • for the Satisfiability Problem 126
  • 4.6 Time-Reversible Markov Chains 131
  • 4.7 Markov Chain Monte Carlo Methods 142
  • Exercises 147
  • 5 The Probabilistic Method 151
  • 5.1 Introduction 151
  • 5.2 Using Probability To Prove Existence 151
  • 5.3 Obtaining Bounds fiom Expectations 153
  • 5.4 The Maximum Weighted Independent
  • Set Problem: A Bound and a Random Algorithm 156
  • 5.5 The Set-Covering Problem 161
  • 5.6 Antichains 163
  • 5.7 The Lovasz Local Lemma 164
  • 5.8 A Random Algorithm for Finding the Minimal
  • Cut in a Graph 169
  • Exercises 171
  • 6 Martingales 175
  • 6.1 Definitions and Examples 175
  • 6.2 The Martingale Stopping Theorem 177
  • 6.3 The Hoeffding-Azuma Inequality 189
  • 6.4 Submartingales 192
  • Exercises 194
  • 7 Poisson Processes 199
  • 7.1 The Nonstationary Poisson Process 199
  • 7.2 The Stationary Poisson Process 203
  • 7.3 Some Poisson Process Computations 205
  • 7.4 Classifying the Events of a Nonstationary Poisson Process 211
  • 7.5 Conditional Distribution of the Arrival Times 215
  • Exercises 217
  • 8 Queueing Theory 221
  • 8.1 Introduction 221
  • 8.2 Preliminaries 222
  • 8.2.1 Cost Equations 222
  • 8.2.2 Steady-State Probabilities 224
  • 8.3 Exponential Models 226
  • 8.3.1 A Single-Server Exponential Queueing System 226
  • 8.4 Birth-and-Death Exponential Queueing Systems 230
  • 8.5 The Backwards Approach in Exponential Queues 238
  • 8.6 A Closed Queueing Network 239
  • 8.7 An Open Queueing Network 243
  • 8.8 The M/G/I Queue 248
  • 8.8.1 Preliminaries: Work and Another Cost Identity 248
  • 8.8.2 Application of Work to M/G/1 249
  • 8.8.3 Busy and idle Periods 253
  • 8.8.4 Relating the Variances of Waiting
  • Times and Number in System 254
  • 8.9 Priority Queues 255
  • Exercises 258
  • 9 Simulation 261
  • 9.1 Monte Carlo Simulation 261
  • 9.2 Generating Discrete Random Variables 263
  • 9.3 Generating Continuous Random Variables:
  • The Inverse Transform Approach 266
  • 9.4 The Rejection Method 268
  • 9,5 Variance Reduction 272
  • 9.5.1 Antithetic Variables 272
  • 9.5.2 Importance Sampling 275
  • 9.5.3 Variance Reduction by Conditional Expectation 279
  • Exercises 280
  • References 283
  • Index 285.