Loading...

An introduction to Kalman filtering with MATLAB examples /

The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applicati...

Full description

Bibliographic Details
Main Authors: Kovvali, Narayan V. S. K. (Author), Banavar, Mahesh K. (Author), Spanias, Andreas (Author)
Format: eBook
Language:English
Published: San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, 2014.
Series:Synthesis digital library of engineering and computer science.
Synthesis lectures on signal processing ; # 12.
Subjects:
Online Access:Abstract with links to full text
LEADER 04418nam a2200733 i 4500
001 201309SPR012
005 20160320103534.0
006 m eo d
007 cr cn |||m|||a
008 131016s2014 caua foab 000 0 eng d
020 |a 9781627051408  |q (electronic bk.) 
020 |z 9781627051392  |q (pbk.) 
024 7 |a 10.2200/S00534ED1V01Y201309SPR012  |2 doi 
035 |a (CaBNVSL)swl00402797 
035 |a (OCoLC)860909544 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QA402.3  |b .K685 2014 
082 0 4 |a 629.8312  |2 23 
100 1 |a Kovvali, Narayan V. S. K.,  |e author. 
245 1 3 |a An introduction to Kalman filtering with MATLAB examples /  |c Narayan Kovvali, Mahesh Banavar, and Andreas Spanias. 
264 1 |a San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool,  |c 2014. 
300 |a 1 PDF (ix, 71 pages) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Synthesis lectures on signal processing,  |x 1932-1694 ;  |v # 12 
500 |a Part of: Synthesis digital library of engineering and computer science. 
500 |a Series from website. 
504 |a Includes bibliographical references (pages 67-70). 
505 0 |a 1. Introduction --  
505 8 |a 2. The estimation problem -- 2.1 Background -- 2.1.1 Example: maximum-likelihood estimation in Gaussian noise -- 2.2 Linear estimation -- 2.3 The Bayesian approach to parameter estimation -- 2.3.1 Example: estimating the bias of a coin -- 2.4 Sequential Bayesian estimation -- 2.4.1 Example: the 1-D Kalman filter --  
505 8 |a 3. The Kalman filter -- 3.1 Theory -- 3.2 Implementation -- 3.2.1 Sample MATLAB code -- 3.2.2 Computational issues -- 3.3 Examples -- 3.3.1 Target tracking with radar -- 3.3.2 Channel estimation in communications systems -- 3.3.3 Recursive least squares (RLS) adaptive filtering --  
505 8 |a 4. Extended and decentralized Kalman filtering -- 4.1 Extended Kalman filter -- 4.1.1 Example: predator-prey system -- 4.2 Decentralized Kalman filtering -- 4.2.1 Example: distributed object tracking --  
505 8 |a 5. Conclusion -- Notation -- Bibliography -- Authors' biographies. 
506 |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 |a Compendex 
510 0 |a Google book search 
510 0 |a Google scholar 
510 0 |a INSPEC 
520 3 |a The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader. 
588 |a Title from PDF title page (viewed on October 16, 2013). 
630 0 0 |a MATLAB. 
650 0 |a Kalman filtering. 
653 |a Bayesian estimation 
653 |a dynamical system 
653 |a Gaussian noise 
653 |a Kalman filter 
653 |a linearity 
653 |a parameter estimation 
653 |a sequential 
653 |a state space model 
653 |a tracking 
700 1 |a Banavar, Mahesh K.,  |e author. 
700 1 |a Spanias, Andreas.,  |e author. 
776 0 8 |i Print version:  |z 9781627051392 
830 0 |a Synthesis digital library of engineering and computer science. 
830 0 |a Synthesis lectures on signal processing ;  |v # 12.  |x 1932-1694 
856 4 8 |3 Abstract with links to full text  |u http://dx.doi.org/10.2200/S00534ED1V01Y201309SPR012 
942 |c EB 
999 |c 81081  |d 81081 
952 |0 0  |1 0  |4 0  |7 0  |9 73101  |a MGUL  |b MGUL  |d 2016-03-20  |l 0  |r 2016-03-20  |w 2016-03-20  |y EB