Wordt geladen...

Graph-based natural language processing and information retrieval /

"This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval"--

Bibliografische gegevens
Hoofdauteur: Mihalcea, Rada
Andere auteurs: Radev, Dragomir
Formaat: Printed Book
Taal:English
Gepubliceerd in: Cambridge ; New York : Cambridge University Press, 2011, ©2011.
Onderwerpen:
Online toegang:http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-d.html
http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-t.html
http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-b.html
LEADER 02764cam a2200277 i 4500
005 20160322165205.0
008 101018t20112011enka b 001 0 eng
020 |a 9780521896139 
041 |a eng 
082 0 0 |a 004.8NLP  |b MIH 
100 1 |a Mihalcea, Rada,  |9 2073 
245 1 0 |a Graph-based natural language processing and information retrieval /  |c Rada Mihalcea, Dragomir Radev. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011, ©2011. 
300 |a viii, 192 pages : 
505 8 |a Machine generated contents note: Part I. Introduction to Graph Theory: 1. Notations, properties, and representations; 2. Graph-based algorithms; Part II. Networks: 3. Random networks; 4. Language networks; Part III. Graph-Based Information Retrieval: 5. Link analysis for the world wide web; 6. Text clustering; Part IV. Graph-Based Natural Language Processing: 7. Semantics; 8. Syntax; 9. Applications. 
520 |a "This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval"-- 
520 |a "Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications, and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification, and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms"-- 
650 0 |a Natural language processing (Computer science)  |9 297 
650 0 |a Graphical user interfaces (Computer systems)  |9 2074 
700 1 |a Radev, Dragomir,  |9 2075 
856 4 2 |u http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-d.html 
856 4 1 |u http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-t.html 
856 4 2 |u http://catdir.loc.gov/catdir/enhancements/fy1101/2010044578-b.html 
942 |c BK  |6 _ 
999 |c 155859  |d 155859 
952 |0 0  |1 0  |4 0  |6 0048NLP_MIH  |7 0  |9 203871  |a DCS  |b DCS  |c GEN  |d 2014-08-26  |o 004.8NLP MIH  |p MCS05760  |r 2014-08-26  |w 2014-08-26  |y BK